网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
填空题
线性规划问题的所有可行解构成的集合是()。

参考答案

参考解析
解析: 暂无解析
更多 “填空题线性规划问题的所有可行解构成的集合是()。” 相关考题
考题 满足线性规划问题所有约束条件的解称为可行解。() 此题为判断题(对,错)。

考题 ● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 线性规划问题全部()的集合构成线性规划问题的()。

考题 线性规划问题的可行解是满足约束条件的解。()

考题 下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 线性规划最优解不唯一是指( ) A.可行解集合无界 B. C.可行解集合是空集 D.最优表中存在非基变量的检验数非零

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在 B.如果可行解区存在,则一定有界 C.如果可行解区存在但无界,则一定不存在最优解 D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确

考题 关于运输问题正确的是()A、是线性规划问题B、不是线性规划问题C、可能存在无可行解D、可能无最优解

考题 线性规划问题的所有可行解构成的集合是()。

考题 线性规划问题的可行解是指满足所有()的解

考题 线性规划最优解不唯一是指()A、可行解集合无界B、最优表中存在非基变量的检验数非零C、可行解集合是空集

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。

考题 满足线性规划问题所有约束条件的解称为()。A、可行解B、基本可行解C、无界解D、最优解

考题 假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D和B的关系为()。

考题 如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A、基B、基本解C、基可行解D、可行域

考题 线性规划问题的可行解是指满足()的解。

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题满足线性规划问题所有约束条件的解称为()。A 可行解B 基本可行解C 无界解D 最优解

考题 单选题对于线性规划问题,下列说法正确的是()A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D 上述说法都正确

考题 单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A 基B 基本解C 基可行解D 可行域

考题 单选题线性规划最优解不唯一是指()A 可行解集合无界B 最优表中存在非基变量的检验数非零C 可行解集合是空集

考题 判断题若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。A 对B 错

考题 填空题线性规划问题的可行解是指满足所有()的解