网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

F(x)为随机变量的分布函数,当x2>x1时,有F(x2)()F(x1).

  • A、>
  • B、≥
  • C、<
  • D、≤

参考答案

更多 “F(x)为随机变量的分布函数,当x2x1时,有F(x2)()F(x1).A、B、≥C、D、≤” 相关考题
考题 已知x1(t)和x2(t)的傅里叶变换分别为X1(f)和X2(f),则卷积x1(t)*x2(t)的傅里叶变换为()。 A、X1(f)X2(f)B、X1(f)*X2(f)C、X1(-f)X2(-f)D、X1(-f)*X2(-f)

考题 请补充main函数,该函数的功能是求方程ax2+bx+c=0的根(方程的系数a,b,c从键盘输入)。例如, 当a=1,b=2,c=1时, 方程的两个根分别是:x1=-1.00,x2=-1.00。注意:部分源程序给出如下。请勿改动主函数main和其他函数中的任何内容,仅在 main函数的横线上填入所编写的若干表达式或语句。试题程序:include <stdio.h>include <conio.h>include <math.h>main(){float a,b,c,disc,x1,x2,p,q;scanf("%f,%f,%f",a,b,c);disc=b*b-4*a*c;clrscr();printf("****** the result ****+*+\n");if(disc>=0){x1=【 】;x2=(-b-sqrt(disc))/(2*a);printf("x1=%6.2f,x2=%6.2f\n",x1,x2);}else{p=【 】;q=【 】;printf("x1=%6.2f+%6.2f i\n",p,q);printf("x2=%6.2f-%6.2f i\n",p,q);}}

考题 已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x2,x2 (0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

考题 设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是( ).A.F(x^2) B.F(-z) C.1-F(x) D.F(2x-1)

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:

考题 设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则(). A.F(z)=F(-x) B.F(x)=F(-x) C.F(X)=F(-x) D.f(x)=f(-x)

考题 设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。A. B. C.F(-a)=F(a) D.F(-a)=2F(a)-1

考题 设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().

考题 设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().

考题 设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(λ>1)的指数分布,记φ(x)为标准正态分布函数,则

考题 假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布函数,则下列各式中正确的是( )《》( )A.F(x)=F(-x); B.F(x)=-F(-x); C.f(x)=f(-x); D.f(x)=-f(-x).

考题 设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。

考题 二元多项式f(x1,x2),如果将x1,x2对换后,有f(x1,x2=f(x2,x1)则称f(x1,x2)为二元对称多项式。下列是二元对称多项式的是( )。 A. B. C. D.

考题 已知 X1 和 X2 是相互独立的随机变量,分布函数分别为F1(x)和F2(x),则下列选项一定是某一随机变量分布函数的为( )

考题 设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。 A.x=x1及x=x2都必不是f(x)的极值点 B.只有x=x1是f(x)的极值点 C.x=x1及x=x2都有可能是f(x)的极值点 D.只有x=x2是f(x)的极值点

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A、a=3/5,b=-2/5B、a=2/3,b=2/3C、a=-1/2,b=3/2D、a=1/2,b=-2/3

考题 F(x)为随机变量的分布函数,当x2x1时,有F(x2)()F(x1)。

考题 设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数

考题 设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A、x=x1及x=x2都必不是f(x)的极值点B、只有x=x1是f(x)的极值点C、x=x1及x=x2都有可能是f(x)的极值点D、只有x=x2是f(x)的极值点

考题 设F1(x)与F1(x)分别为随机变量X1与X2的分布函数,若函数F(x)=aF1(x)-bF2(x)是某随机变量的分布函数,则必有()A、a=3/5,b=-2/5B、a=-3/5,b=2/5C、a=1/2,b=3/2D、a=1/2,b=-3/2

考题 单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )A f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

考题 单选题设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A a=3/5,b=-2/5B a=2/3,b=2/3C a=-1/2,b=3/2D a=1/2,b=-2/3

考题 单选题F(x)为随机变量的分布函数,当x2x1时,有F(x2)()F(x1).A B ≥C D ≤

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 单选题设F1(x),F2(x)分别是随机变量X1,X2的分布函数,为使F(x)=aF1(x)-bF2(x)是随机变量X的分布函数,则在下列给定的各组数中应取(  )。A a=3/5,b=-2/5B a=2/3,b=2/3C a=-1/2,b=3/2D a=1/2,b=-3/2

考题 问答题设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

考题 问答题10.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=aF1(x)一bF2(x)也是某一随机变量的分布函数,证明a—b=1.