网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
我们想在大数据集上训练决策树,为了使用较少时间,我们可以()
A.增加树的深度
B.增加学习率(learnin grate)
C.减少树的深度
D.减少树的数量
参考答案
更多 “ 我们想在大数据集上训练决策树,为了使用较少时间,我们可以()A.增加树的深度B.增加学习率(learnin grate)C.减少树的深度D.减少树的数量 ” 相关考题
考题
对应GradientBoostingtree算法,以下说法正确的是()1.当增加最小样本分裂个数,我们可以抵制过拟合2.当增加最小样本分裂个数,会导致过拟合3.当我们减少训练单个学习器的样本个数,我们可以降低variance4.当我们减少训练单个学习器的样本个数,我们可以降低biasA.2和4B.2和3C.1和3D.1和4
考题
假设我们有一个数据集,在一个深度为6的决策树的帮助下,它可以使用100%的精确度被训练。现在考虑一下两点,并基于这两点选择正确的选项。注意:所有其他超参数是相同的,所有其他因子不受影响。1.深度为4时将有高偏差和低方差2.深度为4时将有低偏差和低方差A.只有 1B.只有 2C.1 和 2D.没有一个
考题
对应GradientBoostingtree算法,以下说法正确的是:( )
A.当增加最小样本分裂个数,我们可以抵制过拟合B.当增加最小样本分裂个数,会导致过拟合C.当我们减少训练单个学习器的样本个数,我们可以降低varianceD.当我们减少训练单个学习器的样本个数,我们可以降低bias
考题
我们想要减少数据集中的特征数,即降维.选择以下适合的方案:( )
A.使用前向特征选择方法B.使用后向特征排除方法C.我们先把所有特征都使用,去训练一个模型,得到测试集上的表现.然后我们去掉一个特征,再去训练,用交叉验证看看测试集上的表现.如果表现比原来还要好,我们可以去除这个特征.D.查看相关性表,去除相关性最高的一些特征
考题
在R中利用MASS包中的Boston数据集构建决策树的回归树模型,70%作为训练集,30%作为测试集,利用K折交叉验证和剪枝构建最优的决策树模型。进一步,根据合奏学习原理利用R中的randomForest包构建随机森林。对比结果并进行简要分析。需要上传程序代码。
考题
【单选题】我们想在大数据集上训练决策树,为了使用较少时间,可以()A.增加树的深度B.增加学习率C.减少树的深度D.减少树的数量
热门标签
最新试卷