网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
图所示刚架,EI为常数,结点A的转角是(  )。(提示:利用对称性和转动刚度的概念)




参考答案

参考解析
解析:利用对称性,该结构可以简化为如图示。在A点施加刚臂,转动刚度系数为:k=3i+4i+2i=9i,i=EI/a,转角Z=M/k=Ma/9EI。

更多 “图所示刚架,EI为常数,结点A的转角是(  )。(提示:利用对称性和转动刚度的概念) ” 相关考题
考题 有如图所示简支梁,其抗弯刚度EI为常数。该梁的挠曲线方程为()。A.B.C.D.

考题 图所示刚架,各杆线刚度相同,则结点A的转角大小为(  )。

考题 图所示的刚架,EI=常数,各杆长为l,A截面的转角为(  )。

考题 如图所示结构,EI为常数,欲使结点B的转角为零,则q的值为(  )kN/m。 A、0 B、2 C、4 D、8

考题 已知刚架的弯矩图如图所示,杆的抗弯刚度为杆的为2EI,则结点B的角位移等于:

考题 图示刚架,各杆线刚度相同,则结点A的转角大小为(  )。

考题 图所示刚架,EI=常数,结点A的转角是(  )。(提示:利用转动刚度的概念)

考题 图所示连续梁,EI为常数,用力矩分配法求得结点B的不平衡力矩为(  )。 A、-20kN·m B、15kN·m C、-5kN·m D、5kN·m

考题 图示梁AB,EI为常数,固支端A发生顺时针的支座转动,由此引起的B处的转角为(  )。

考题 图示刚架EI=常数,结点B的水平位移为(  )。

考题 图示刚架,EI=常数,B点的竖向位移(↓)为:

考题 图示刚架,EI为常数,结点A的转角是(  )。(提示:利用对称性和转动刚度的概念)

考题 图示刚架EI=常数,截面C和D的相对转角为(  )。

考题 图示刚架,EI为常数,忽略轴向变形。当D支座发生支座沉降时,B点转角为(  )。

考题 图示两刚架的EI均为常数,已知EIa=4EIb,则图a)刚架各截面弯矩与图b)刚架各相应截面弯矩的倍数关系为:

考题 图示刚架,EI=常数,结点A的转角是(  )。(提示:利用转动刚度的概念)

考题 图所示梁AB,EI为常数,固支端A发生顺时针的支座转动θ,由此引起的B处的转角为(  )。 {图} A.θ,顺时针 B.θ,逆时针 C.θ/ 2,顺时针 D.θ/ 2,逆时针

考题 图示结构,EI为常数。结点B处弹性支撑刚度系数k=3EI/L3,C点的竖向位移为(  )。

考题 图示为刚架在均布荷载作用下的M图,曲线为二次抛物线,横梁的抗弯刚度为2EI,竖柱为EI,支座A处截面转角为:

考题 图式刚架,各杆线刚度i相同,则结点A的转角大小为:

考题 用位移法计算图所示梁(EI=常数),基本体系如图所示,k11为(  )。 A、6EI/l B、7EI/l C、8EI/l D、9EI/l

考题 如图a)所示结构,取图b)为力法基本体系,EI=常数,Δ1P为:

考题 图示为结构在荷载作用下的M图,各杆EI=常数,则支座B处截面的转角为:

考题 用位移法计算图示刚架,画M图。EI=常数。

考题 计算图示刚架结点C的水平位移和转角,EI=常数。

考题 用位移法求解刚架,并绘弯矩图。各杆EI相同等于常数。

考题 关于刚架杆件转动刚度,下列说法中不正确的是()。A、数值上等于使杆端产生单位转角时需要施加的力矩B、其值仅与杆件的线刚度有关C、远端支承为铰支时其值为3iD、转动刚度表示杆端抵抗转动的能力