网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

按行优先顺序存储下三角矩阵Ann的非零元素,则计算非零元素aii(1≤j≤i≤i≤n)的地址的公式为Loc(aij)=Loc(a11)+______。


参考答案

更多 “ 按行优先顺序存储下三角矩阵Ann的非零元素,则计算非零元素aii(1≤j≤i≤i≤n)的地址的公式为Loc(aij)=Loc(a11)+______。 ” 相关考题
考题 (3)按行优先顺序存储下三角矩阵 Ann 的非零元素,则计算非零元素 aij (1≤j≤i≤n)的地址的公式为Loc(aij) = 【3】 + i * (i–1) / 2 + (j–1)。x, W6 r6 I1 q

考题 按行优先顺序存储下三角矩阵Ann的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为Loc(aij)=Loc(aii)+______。

考题 按行优先顺序存储下三角矩阵A。的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址公式为Loc(aij)=_________1﹡(i-1)/2+(j-1)。

考题 按行优先顺序存储下三角矩阵A。的非零元素,则计算非零元素aij(下标)(1≤j≤i≤n)的地址的公式为Loc(aij=【 】+i*(i-1)/2+(j-1)。

考题 按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为______。A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

考题 按行优先顺序存储下三角矩阵A。的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为 Loc(aij)=Loc(a11)+【 】。

考题 按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为( )。 A.LOC(aij)=LOC(a11)+i×(i+1)/2+j B.LOC(aij)=LOC(all)+i×(i+1)/2+(j-1) C.LOC(aij)=LOC(all)+i×(i-1)/2+(j+1) D.LOC(aij)=LOC(all)+i×(i-1)/2+(j-1)

考题 按行优先顺序存储下三角矩阵的非零元素,则计算非零元素a/subij1≤j≤i≤n)的地址的公式为A.LOC(aij)=LOC(all)+i×(i+1)/2+jB.LOC(aij)=LOC(all)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(all)+i×(i-1)/2+jD.LOC(aij)=LOC(all)+i×(i-1)/2+(j-1)

考题 按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为( )。A.LOC(aij)=LOC(aij)+i×(i+1)/2+jB.LOC(aij)=LOC(aij)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(aij)+i×(i-1)/2+jD.LOC(aij)=LOC(aij)+i×(i-1)/2+(j-1)