网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
知道“三角形的内角和等于180度”,属于()。
- A、策略性知识
- B、陈述性知识
- C、条件性知识
- D、程序性知识
参考答案
更多 “知道“三角形的内角和等于180度”,属于()。A、策略性知识B、陈述性知识C、条件性知识D、程序性知识” 相关考题
考题
如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角
如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________。
考题
在平面中三角形内角和等于180度,在球面中三角形内角和大于180度,在凹面中三角形内角和小于180度,这说明( )。A.真理具有决定性
B.真理具有相对性
C.真理具有客观性
D.真理具有全面性
考题
材料一人类认识和把握世界的过程,也就是追求真理的过程。我们可以用纸折叠的方式来检验在平面上三角形内角之和等于180度,不管我们以前有没有认识到这一点,它都是不以人的意志为转移的,是客观存在的。我们实践中获得了平面上三角形内角之和等于180度的真理性的认识。
材料二我们知道了在平面上三角形内角之和等于180度。19世纪初,德国数学家指出:在球形凸面上,三角形内角之和大于180度。由此,人们关于空间的观念发生了革命性的转变。我们在地球仪上随意选择三点构成三角形直观感悟内角之和的情况。可以看到赤道、经线90度和0度经线构成270度的角。
材料三 随着农林畜牧业的发展、土地丈量和利用的增多,使人们逐渐确立了三角形内角之和等于180度的认识。随着航海事业的发展和人们对球面认识的不断深入,这一认识的局限性逐渐暴露出来。 19世纪初,俄国数学家提出:在凹曲面上,三角形内角之和小于180度。
这个过程受到了什么因素的制约?
考题
在平面中三角形内角和等于180°,但在球面中,三角形内角和大于180°,在凹面中内角和小于180°。这说明()。A、真理具有绝对性B、真理具有相对性C、真理具有客观性D、真理具有全面性
考题
单选题在平面中三角形内角和等于180°,但在球面中,三角形内角和大于180°,在凹面中内角和小于180°。这说明()。A
真理具有绝对性B
真理具有相对性C
真理具有客观性D
真理具有全面性
考题
单选题三角形内角之和等于180°。但是,在凹曲面上,三角形内角之和小于180°,而在球形凸面上,三角形内角之和大于180°。这说明( )。①真理和谬误往往是相伴而行的②真理是有条件的、具体的③对同一个确定对象的认识可以有多个真理④任何真理都有自己适用的条件和范围A
①④B
②③C
①③D
②④
考题
单选题如果一个三角形的两个内角度数的和等于第三个内角的度数,那么这个三角形是()。A
钝角三角形B
锐角三角形C
直角三角形D
无法判断
热门标签
最新试卷