网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
Train conductor: Excuse me, mama. Ticket, please.
Passenger: Sorry. I left it in the smoking section and I'll go fetch it.
Train conductor: It's OK, lady._________ .
A. Take your time
B. Take your seat
C. You can go now
D. As you please
参考答案
更多 “ Train conductor: Excuse me, mama. Ticket, please.Passenger: Sorry. I left it in the smoking section and I'll go fetch it.Train conductor: It's OK, lady._________ .A. Take your timeB. Take your seatC. You can go nowD. As you please ” 相关考题
考题
Conductor: Good morning, , please?Passenger: Here you are.A. can I have your ticketB. anything to declareC. can I help youD. anything special
考题
阅读下列C程序和程序说明,将应填入(n)处的字句写在对应栏内。【说明】下面是一个用C编写的快速排序算法。为了避免最坏情况,取基准记录pivot时,采用从left、right和mid=[(left+right)/2]中取中间值,并交换到right位置的办法。数组a存放待排序的一组记录,数据类型为T,left和right是待排序子区间的最左端点和最右端点。void quicksort (int a[], int left, int right) {int temp;if (left<right) {hat pivot = median3 (a, left, right); //三者取中子程序int i = left, j = right-1;for(;;){while (i <j a[i] < pivot) i++;while (i <j pivot < a[j]) j--;if(i<j){temp = a[i]; a[j] = a[i]; a[i] = temp;i++; j--;}else break;}if (a[i] > pivot){temp = a[i]; a[i] = a[right]; a[right] = temp;}quicksort( (1) ); //递归排序左子区间quieksort(a,i+1 ,right); //递归排序右子区间}}void median3 (int a[], int left, int right){ int mid=(2);int k = left;if(a[mid] < a[k])k = mid;if(a[high] < a[k]) k = high; //选最小记录int temp = a[k]; a[k] = a[left]; a[left] = temp; //最小者交换到 leftif(a[mid] < a[right]){temp=a[mid]; a[mid]=a[right]; a[right]=temp;}}消去第二个递归调用 quicksort (a,i+1,right)。 采用循环的办法:void quicksort (int a[], int left, int right) {int temp; int i,j;(3) {int pivot = median3(a, left, right); //三者取中子程序i = left; j = righi-1;for (;; ){while (i<j a[i] < pivot)i++;while (i<j pivot <a[j]) j--;if(i <j) {temp = a[i]; a[j]; = a[i]; a[i]=temp;i++; j--;}else break;}if(a[i]>pivot){(4);a[i]=pivot;}quicksoft ((5)); //递归排序左子区间left = i+1;}}
考题
在MINST数据集中,访问训练集train_x的第4个样本,可以通过_______语句实现。A.train_x[4]B.train_x[3]C.train_x[0:3]D.train_x[:4]
考题
下列哪些语句会开始模型的训练:A.LinearRegression().fit(x_train,y_train)B.lr_mod.predict(x_train)C.lasso_mod.fit(x_train,y_train)D.vote_mod.predict(x_train)
热门标签
最新试卷