网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

二叉排序树是动态树表,查找失败时插入新结点,会引起树的重新分裂和组合


参考答案和解析
B
更多 “二叉排序树是动态树表,查找失败时插入新结点,会引起树的重新分裂和组合” 相关考题
考题 在查找树中插入一个新结点,总是插入到叶结点下面。 A.错误B.正确

考题 已知二叉树T的结点形式为(lling,data,count,rlink),在树中查找值为X的结点,若找到,则记数(count)加1,否则,作为一个新结点插入树中,插入后仍为二叉排序树,写出其非递归算法。

考题 在平衡的二叉排序树中,向某个平衡因子不为零的结点的树中插入一新结点,必引起平衡旋转。()

考题 对于同一组结点,由于建立二叉排序树时插入结点的先后次序不同,所构成的二叉排序树的形态及深度也不同,所以含有n个结点的二叉排序树不唯一。 () 此题为判断题(对,错)。

考题 阅读以下说明和C代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树。 (1)若它的左子树非空,则左子树上所有结点的值均小于根结点的值。 (2)若它的右子树非空,则右子树上所有结点的值均大于根结点的值。 (3)左、右子树本身就是两棵二叉查找树。 二叉查找树是通过依次输入数据元素并把它们插入到二叉树的适当位置上构造起来的,具体的过程是:每读入一个元素,建立一个新结点,若二叉查找树非空,则将新结点的值与根结点的值相比较,如果小于根结点的值,则插入到左子树中,否则插入到右子树中;若二叉查找树为空,则新结点作为二叉查找树的根结点。 根据关键码序列{46,25,54,13,29,91}构造一个二叉查找树的过程如图4-1所示。设二叉查找树采用二叉链表存储,结点类型定义如下: typedef int KeyType; typedef struct BSTNode{ KeyType key; struct BSTNode *left,*right; }BSTNode,*BSTree; 图4-1(g)所示二叉查找树的二叉链表表示如图4-2所示。图4-2 函数int InsertBST(BSTree *rootptr,KeyType kword)功能是将关键码kword插入到由rootptr指示出根结点的二叉查找树中,若插入成功,函数返回1,否则返回0。【C代码】 int lnsertBST(BSTree*rootptr,KeyType kword) /*在二叉查找树中插入一个键值为kword的结点,若插入成功返回1,否则返回0; *rootptr为二叉查找树根结点的指针 */ { BSTree p,father; (1) ; /*将father初始化为空指针*/ p=*rootptr; /*p指示二叉查找树的根节点*/ while(p (2) ){ /*在二叉查找树中查找键值kword的结点*/ father=p; if(kword<p->key) p=p->left; else p=p->right; } if( (3) )return 0; /*二叉查找树中已包含键值kword,插入失败*/ p=(BSTree)malloc( (4) ); /*创建新结点用来保存键值kword*/ If(!p)return 0; /*创建新结点失败*/ p->key=kword; p->left=NULL; p->right=NULL; If(!father) (5) =p; /*二叉查找树为空树时新结点作为树根插入*/ else if(kword<father->key) (6) ; /*作为左孩子结点插入*/ else (7) ; /*作右孩子结点插入*/ return 1; }/*InsertBST*/

考题 试题三(共15分)阅读以下说明和C函数,填充函数中的空缺,将解答填入答题纸的对应栏内。【说明】函数Insert _key (*root,key)的功能是将键值key插入到*root指向根结点的二叉查找树中(二叉查找树为空时*root为空指针)。若给定的二叉查找树中已经包含键值为key的结点,则不进行插入操作并返回0;否则申请新结点、存入key的值并将新结点加入树中,返回l。提示:二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树:●若它的左子树非空,则其左子树上所有结点的键值均小于根结点的键值;●若它的右子树非空,则其右子树上所有结点的键值均大于根结点的键值;●左、右子树本身就是二叉查找树。设二叉查找树采用二叉链表存储结构,链表结点类型定义如下:typedef struct BiTnode{int key _value; /*结点的键值,为非负整数*/struct BiTnode *left,*right; /*结点的左、右子树指针*/}BiTnode, *BSTree;【C函数】int Insert _key( BSTree *root,int key){BiTnode *father= NULL,*p=*root, *s;while( (1)&&key!=p-key_value){/*查找键值为key的结点*/father=p;if(key p-key_value)p= (2) ; /*进入左子树*/else p= (3) ; /木进入右子树*/}if (p) return 0; /*二叉查找树中已存在键值为key的结点,无需再插入*/s= (BiTnode *)malloc( (4) );/*根据结点类型生成新结点*/if (!s) return -1;s-key_value= key; s-left= NULL; s-right= NULL;if( !father)(5) ; /*新结点作为二叉查找树的根结点*/else /*新结点插入二叉查找树的适当位置*/if( key father-key_value)father-left = s;elsefather-right = s;retum 1:}

考题 阅读以下说明和C代码,填补代码中的空缺,将解答填入答题纸的对应栏内。【说明】二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树。(1)若它的左子树非空,则左子树上所有结点的值均小于根结点的值。(2)若它的右子树非空,则右子树上所有结点的值均大于根结点的值。(3)左、右子树本身就是两棵二叉查找树。二叉查找树是通过依次输入数据元素并把它们插入到二叉树的适当位置上构造起来的,具体的过程是:每读入一个元素,建立一个新结点,若二叉查找树非空,则将新结点的值与根结点的值相比较,如果小于根结点的值,则插入到左子树中,否则插入到右子树中;若二叉查找树为空,则新结点作为二叉查找树的根结点。根据关键码序列{46,25,54,13,29,91}构造一个二叉查找树的过程如图4-1所示。 设二叉查找树采用二叉链表存储,结点类型定义如下: typedef int KeyType;typedef struct BSTNode{KeyType key;struct BSTNode *left,*right;}BSTNode,*BSTree; 图4-1(g)所示二叉查找树的二叉链表表示如图4-2所示。 函数int InsertBST(BSTree *rootptr,KeyType kword)功能是将关键码kword插入到由rootptr指示出根结点的二叉查找树中,若插入成功,函数返回1,否则返回0。【C代码】 int lnsertBST(BSTree*rootptr,KeyType kword)/*在二叉查找树中插入一个键值为kword的结点,若插入成功返回1,否则返回0;*rootptr为二叉查找树根结点的指针*/{BSTree p,father;(1) /*将father初始化为空指针*/p=*rootptr; /*p指示二叉查找树的根节点*/while(pif(kword<p->key)p=p->left;elsep=p->right;}if((3))return 0; /*二叉查找树中已包含键值kword,插入失败*/ p=(BSTree)malloc((4)); /*创建新结点用来保存键值kword*/If(!p)return 0; /*创建新结点失败*/p->key=kword;p->left=NULL;p->right=NULL; If(!father)(5) =p; /*二叉查找树为空树时新结点作为树根插入*/elseif(kword<father->key)(6);/*作为左孩子结点插入*/else(7);/*作右孩子结点插入*/return 1;}/*InsertBST*/

考题 设二叉排序树中有n个结点,则在二叉排序树的平均查找长度为()。

考题 以下关于二叉排序树的说法正确的是()。Ⅰ.在二叉排序树中,每个结点的关键字都比左孩子关键字大,比右孩子关键字小Ⅱ.每个结点的关键字都比左孩子关键字大,比右孩子关键字小,这样的二叉树都是二叉排序树Ⅲ,在二叉排序树中,新插入的关键字总是处于最底层Ⅳ.在二叉排序树中,新结点总是作为叶子结点来插入的Ⅴ.二叉排序树的查找效率和二叉排序树的高度有关A.Ⅰ、Ⅱ、Ⅳ、Ⅴ B.Ⅱ、Ⅲ、Ⅳ C.Ⅰ、Ⅲ、Ⅴ D.Ⅰ、Ⅳ、Ⅴ

考题 查找效率最高的二叉排序树是()。A.所有结点的左子树都为空的二叉排序树 B.所有结点的右子树都为空的二叉排序树 C.平衡二叉排序树 D.没有左子树的二叉排序树

考题 在二叉排序树中进行查找的效率与( )有关。A.二叉排序树的深度 B.二叉排序树的结点个数 C.被查找结点的度 D.二叉排序树的存储结构

考题 “一棵二叉树若它的根结点的值大于左子树所有结点的值,小于右子树所有结点的值,则该树一定是二叉排序树”。设有查找表{7,16,4,8,20,9,6,18,5},依次取表中数据构造一棵二叉排序树.对上述二叉树给出后序遍历的结果。

考题 二叉排序树插入操作中,新插入的结点总是以树的()结点被插入的。

考题 在查找树中插入一个新结点,总是插入到叶结点下面。

考题 在结点数确定的二叉排序树上进行查找的平均查找长度与二叉树的形态有关,最差的情况是二叉排序树为()树的时候。

考题 二叉排序树的查找效率与二叉树的()有关。A、高度B、结点的多少C、树型D、结点的位置

考题 删除二叉排序树中一个结点,再重新插入上去,一定能得到原来的二叉排序树。

考题 动态查找表属于树形结构,因为这里涉及二叉排序树。

考题 在二叉排序树中插入新结点时,新结点总是作为叶子结点插入。

考题 查找效率最高的二叉排序树是()。A、所有结点的左子树都为空的二叉排序树。B、所有结点的右子树都为空的二叉排序树。C、平衡二叉树。D、没有左子树的二叉排序树。

考题 对二叉排序树的查找都是从根结点开始的,则查找失败一定落在叶子上。

考题 单选题二叉排序树的查找效率与二叉树的()有关。A 高度B 结点的多少C 树型D 结点的位置

考题 填空题二叉排序树插入操作中,新插入的结点总是以树的()结点被插入的。

考题 判断题删除二叉排序树中一个结点,再重新插入上去,一定能得到原来的二叉排序树。A 对B 错

考题 填空题在结点数确定的二叉排序树上进行查找的平均查找长度与二叉树的形态有关,最差的情况是二叉排序树为()树的时候。

考题 判断题对二叉排序树的查找都是从根结点开始的,则查找失败一定落在叶子上。A 对B 错

考题 单选题查找效率最高的二叉排序树是()。A 所有结点的左子树都为空的二叉排序树。B 所有结点的右子树都为空的二叉排序树。C 平衡二叉树。D 没有左子树的二叉排序树。

考题 判断题在二叉排序树中插入新结点时,新结点总是作为叶子结点插入。A 对B 错