2021年MBA考试《数学》每日一练(2021-10-21)
发布时间:2021-10-21
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编每天为您准备了5道每日一练题目(附答案解析),一步一步陪你备考,每一次练习的成功,都会淋漓尽致的反映在分数上。一起加油前行。
1、某单位有90人,其中有65人参加外语培训,72人参加计算机培训,已知参加外语培训而没参加计算机培训的有8人,则参加计算机培训而没参加外语培训的人数为()。【问题求解】
A.5
B.8
C.10
D.12
E.15
正确答案:E
答案解析:设A表示参加外语培训的人数,B表示参加计算机培训的人数,则如图所示,90人分为四类,从而AB=65-8=57(人),所求。
2、是公比为q的等比数列的前n项之和,且是()。【问题求解】
A.公比为nq的等比数列
B.公比为的等比数列
C.公比为的等比数列
D.公比为q的等比数列
E.不是等比数列
正确答案:B
答案解析:设首项为,公比为q,分两种情况:(1)q=1,则从而。是公比为1的等比数列。(2)q≠1,则综合(1)和(2),可知的等比数列。
3、Ⅳ=864。()(1)从1~8这8个自然数中,任取2个奇数、2个偶数,可组成Ⅳ个不同的四位数(2)从1~8这8个自然数中,任取2个奇数,作为千位和百位数字,取2个偶数,作为十位和个位数字,可组成Ⅳ个不同的四位数【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),在1~8中共有4个奇数、4个偶数,任取2个奇数、2个偶数可组成个不同的四位数,即 N=6×6×24=864(个),即条件(1)充分。由条件(2),即条件(2)不充分。
4、在等差数列,则该数列的前n项和等于()。【问题求解】
A.
B.
C.
D.
E.
正确答案:C
答案解析:,即,因此。
5、的积不含x的一次方项和三次方项,则a-b=()。【问题求解】
A.
B.
C.
D.
E.
正确答案:C
答案解析:,由已知5b-4=0且3b-4a=0,得,因此。
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2021-09-08
- 2021-01-04
- 2021-05-26
- 2019-10-29
- 2020-03-22
- 2021-01-30
- 2020-02-24
- 2021-02-26
- 2019-10-28
- 2021-09-04
- 2021-02-03
- 2021-04-25
- 2020-09-29
- 2020-01-10
- 2021-01-17
- 2020-06-20
- 2021-04-05
- 2021-11-04
- 2020-08-09
- 2020-08-01
- 2021-10-16
- 2021-02-24
- 2020-01-27
- 2020-08-16
- 2020-09-25
- 2020-10-11
- 2021-09-28
- 2020-03-08
- 2020-11-26
- 2020-10-24