网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
三角形三内角观测之和等于()。
A
90°
B
180°
C
270°
D
360°
参考答案
参考解析
解析:
暂无解析
更多 “单选题三角形三内角观测之和等于()。A 90°B 180°C 270°D 360°” 相关考题
考题
三角形内角之和等于180°,这是古希腊数学家欧几里得提出的定理。在此之后的两千多年里,人们一直把看作它任何条件下都适用的真理。但是,19世纪初,俄国数学家罗巴切夫斯基提出:在凹曲面上、三角形内角之和小于180。,随后,德国数学家黎曼提出:在球形凸面上,三角形内角之和大于180°。这说明真理是( )。 A.因人而异的 B.具体的 C.有条件的 D.客观的
考题
如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角
如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________。
考题
公元前3世纪,古希腊数学家欧几里得提出:“三角形内角之和等于180度。”19世纪德国数学家黎曼提出:“在球面上,三角形内角之和大于180度。”后来,俄国数学家罗巴切夫斯基又提出:“在凹面上,三角形内角之和小于180度。”这一认识过程说明
A.真理具有客观性
B.真理具有相对性
C.真理具有绝对性
D.真理具有唯一性
考题
材料一人类认识和把握世界的过程,也就是追求真理的过程。我们可以用纸折叠的方式来检验在平面上三角形内角之和等于180度,不管我们以前有没有认识到这一点,它都是不以人的意志为转移的,是客观存在的。我们实践中获得了平面上三角形内角之和等于180度的真理性的认识。
材料二我们知道了在平面上三角形内角之和等于180度。19世纪初,德国数学家指出:在球形凸面上,三角形内角之和大于180度。由此,人们关于空间的观念发生了革命性的转变。我们在地球仪上随意选择三点构成三角形直观感悟内角之和的情况。可以看到赤道、经线90度和0度经线构成270度的角。
材料三 随着农林畜牧业的发展、土地丈量和利用的增多,使人们逐渐确立了三角形内角之和等于180度的认识。随着航海事业的发展和人们对球面认识的不断深入,这一认识的局限性逐渐暴露出来。 19世纪初,俄国数学家提出:在凹曲面上,三角形内角之和小于180度。
这个过程受到了什么因素的制约?
考题
单选题三角形内角之和等于180°。但是,在凹曲面上,三角形内角之和小于180°,而在球形凸面上,三角形内角之和大于180°。这说明( )。①真理和谬误往往是相伴而行的②真理是有条件的、具体的③对同一个确定对象的认识可以有多个真理④任何真理都有自己适用的条件和范围A
①④B
②③C
①③D
②④
考题
单选题欲确定一个平面三角形至少需要观测其几个内角()。A
一个内角;B
两个内角;C
三个内角。
热门标签
最新试卷