网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
名词解释题
步亦趋 yì bù yì qū
参考答案
参考解析
解析:
暂无解析
更多 “名词解释题步亦趋 yì bù yì qū” 相关考题
考题
以下4个程序中,不能实现两个实参值进行交换的是 ( )。A.void swap (float *p, float *q) { float *t ,a; t = a; t = p; *p = *q; *q = *t; } void main () { float x = 8.0;y = 9.0; swap (x, y); cout<<x<<", "<<y<<B.void swap (float *p, float *q) { float a; a = *p; *p = *q; *q = a; } void main() { float x = 8.0;y = 9.0; swap (x, y); cout<<x<<", "<<y<<end1;C.void swap (float *p, float *q) { float x; x = *p; *p = *q; *q = x; } void main() { float a,b.; *a = 8.0;*b = 9.0; swap (a, b) ;D.void swap (float p, float q) { float a; a = p; p = q; q = a; } void main() { float a = 8.0,b = 9.0; swap (a,b); cout<<x<<", "<<y<<
考题
以下程序的输出结果是include "stdio.h"int *f(int *x,int *y){ if(*x*y) return x; else return y;}main(){ int a=7,b=8, *p,*q,*r ; p=a; q=b; r= f(p,q); printf("%d,%d,%d\n",*p,*q,*r);}
考题
有以下程序:includeincludeusingnamespacestd;classDistance;classpoint{pub
有以下程序: #include <iostream> #include <cmath> using namespace std; class Distance; class point { public: friend class Distance; Point(int a,int B) { x=a; Y=b; } void Print() { cout<<"X= "<<X<<end1; cout<<"Y= "<<Y<<end1; } private: float X,Y; }; class Distance { public: float Dis(Point p,Point q); }; float Distance :: Dis(Point p,Point q) { float result; result=sqrt((p.X-q.X)*(p.X-q.X)+(p.Y-q.Y)*(p.Y-q.Y)); cout<<result<<end1; retUrn result; } int main() { Point p(10,10),q(10,30); Distance d; d.Dis(p,q); return 0; } 运行后的输出结果是( )。A.10B.30C.0D.20
考题
若y1(x)是线性非齐次方程y '+ p(x)= Q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数中哪一个是y '+ p(x)y= Q(x)的解?
A. y=cy1(x)+y2(x)
B. y=y1(x)+c2y2(x)
C. y=c[y1 (x)+y2(x)]
D.y=c1y(x)-y2(x)
考题
已知微分方程y'+p(x)y = q(x)[q(x)≠0]有两个不同的特解y1(x), y2(x),C为任意常数,则该微分方程的通解是:
A.y=C(y1-y2)
B. y=C(y1+y2)
C. y=y1+C(y1+y2)
D. y=y1+C(y1-y2)
考题
已知y1(X)与y2(x)是方程:y" + P(x)y'+Q(x)y = 0的两个线性无关的特解,y1(x)和y2(x)分别是方程y"+P(x)y'+Q(x)y=R1(x)和y"+p(x)+Q(x)y=R2(x)的特解。那么方程y"+p(x)y'+Q(x)y=R1(x)+R2(x)的通解应是:
A. c1y1+c2y2
B. c1Y1(x) +c2Y2 (x)
C. c1y1+c2y2 +Y1(x)
D. c1y1+c2y2 +Y1 (x) +Y2 (x)
考题
已知r1=3,r2=-3是方程y''+py'+q= 0(p和q是常数)的特征方程的两个根,则该微分方程是下列中哪个方程?
A. y''+9y'=0 B. y''-9y'=0
C. y''+9y=0 D. y''-9y=0
考题
已知y1(x)和y2(x)是方程y''+p(x)y'+Q(x)y=0的两个线性无关的特解, Y1(x)和Y2 (x)分别是方程y''+p(x)y'+Q(x)y=R1(x)和y''+p(x)y'+Q(x)y=R2(x)的特解。那么方程y''+p(x)y'+Q(x)y=R1(x)y+R2(x)的通解应是:
A. c1y1+c2y2B. c1Y1(x)+c2Y2(x)
C. c1y1+c2y2+Y1(x) D. c1y1+c2y2+Y1(x)+Y2(x)
考题
强度为Q的源流位于x轴的原点左侧,强度为Q的汇流位于x轴原点右侧,距原点的距离均为a,则流函数为( )。
A. ψ=arctan[y/(x-a)]Q/(2π)+arctan[y/(x+a)]Q/(2π)
B. ψ=arctan[y/(x+a)]Q/(2π)+arctan[y/(x-a)]Q/(2π)
C. ψ=arctan[(y-a)/x]Q/(2π)+arctan[(y+a)/x]Q/(2π)
D. ψ=arctan[(y+a)/x]Q/(2π)+arctan[(y-a)/x]Q/(2π)
考题
若y2(x)是线性非齐次方程y'+p(x)y=q(x)的解,y1(x)是对应的齐次方程y'+p(x)y=0的解,则下列函数也是y'+p(x)y=q(x) 的解的是( )。
A.y=Cy1(x)+y2(x) B. y=y1(x)+Cy2(x)
C.y=C[y1(x)+y2(x)] D.y=Cy1(x)-y2(x)
考题
已知。r1=3,r2=-3是方程y+py+q=0 (p和q是常数)的特征方程的两个根, 则该微分方程是( )。
A. y+9y=0= 0 B. y-9y=0
C. y+9y=0 D.y-9y=0=0
考题
若y2(x)是线性非齐次方程y′+P(x)y=Q(x)的解,y(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(x)y=Q(x)的解()?A、y=cy1(x)+y2(x)B、y=y1(x)+c2y2(x)C、y=c[y1(x)+y2(x)]D、y=c1y(x)-y2(x)
考题
单选题金融资产价格传导机制理论用符号可表示为 ( )A
M↑=i↓=Ps↓=q↑=I↑=Y↑B
M↓=i↑=Ps↑=q↓=I↓=Y↓C
M↓=i↑=Ps↑=q↓=I↓=Y↓D
M↑=i↑=Ps↓=q↓=I↑=Y↑
考题
单选题(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()A
y=c(y1-y2)B
y=c(y1+y2)C
y=y1+c(y1+y2)D
y=y1+c(y1-y2)
考题
单选题已知y1(x)与y2(x)是方程y″+P(x)y′+Q(x)y=0的两个线性无关的特解,Y1(x)和Y2(x)分别是是方程y″+P(x)y′+Q(x)y=R1(x)和y″+P(x)y′+Q(x)y=R2(x)的特解。那么方程y″+P(x)y′+Q(x)y=R1(x)+R2(x)的通解应是:()A
c1y1+c2y2B
c1Y1(x)+c2Y2(x)C
c1y1+c2y2+Y1(x)D
c1y1+c2y2+Y1(x)+Y2(x)
考题
单选题若y2(x)是线性非齐次方程y′+P(z)y=Q(x)的解,y1(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(z)y=Q(x)的解?()A
y=cy1(x)+y2(x)B
y=y1(x)+c2y2(x)C
y=c[y1(x)+y2(x)]D
y=c1y(x)-y2(x)
考题
单选题已知微分方程y′+p(x)y=q(x)(q(x)≠0)有两个不同的解y1(x),y2(x),C为任意常数,则该微分方程的通解是( )。[2012年真题]A
y=C(y1-y2)B
y=C(y1+y2)C
y=y1+C(y1+y2)D
y=y1+C(y1-y2)
考题
单选题若y2(x)是线性非齐次方程y′+P(x)y=Q(x)的解,y(x)是对应的齐次方程y′+P(x)y=0的解,则下列函数中哪一个是y′+P(x)y=Q(x)的解()?A
y=cy1(x)+y2(x)B
y=y1(x)+c2y2(x)C
y=c[y1(x)+y2(x)]D
y=c1y(x)-y2(x)
考题
单选题强度为Q的源流位于x轴的原点左侧,强度为Q的汇流位于x轴原点右侧,距原点的距离均为a,则流函数为( )。[2018年真题]A
ψ=arctan[y/(x-a)]Q/(2π)+arctan[y/(x+a)]Q/(2π)B
ψ=arctan[y/(x+a)]Q/(2π)+arctan[y/(x-a)]Q/(2π)C
ψ=arctan[(y-a)/x]Q/(2π)+arctan[(y+a)/x]Q/(2π)D
ψ=arctan[(y+a)/x]Q/(2π)+arctan[(y-a)/x]Q/(2π)
热门标签
最新试卷