网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
函数在x处的微分为( )。
参考答案
参考解析
解析:正确答案是A。
更多 “函数在x处的微分为( )。 ” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是( )。A
f(x0,y)在y=y0处的导数等于零B
f(x0,y)在y=y0处的导数大于零C
f(x0,y)在y=y0处的导数小于零D
f(x0,y)在y=y0处的导数不存在
考题
单选题函数f(x)在点x=x0处连续是f(x)在点x=x0处可微的( )。[2019年真题]A
充分条件B
充要条件C
必要条件D
无关条件
热门标签
最新试卷