网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
平面简谐波的表达式为y=5cos(3t-4x+5)cm,下列表述中正确的是(  )。

A.x=3.5cm处介质在t=3s时振动速度与波的传播速度相同
B.x=4.0cm介质的振动方程为y=5cos11cm
C.t=5s时介质中任一点的位移为y=5cos(20-4x)cm
D.波沿x轴负方向传播,波速为0.75cm/s

参考答案

参考解析
解析:此波沿x轴正方向传播,波速为0.75cm/s,波长为π/2cm。将x=3.5cm代入波的表达式,则该点的振动方程为y=5cos(3t-9)cm,任意时刻的振动速度为

故t=3s时振动速度为0。x=4.0cm处的振动方程应为y=5cos(3t-11)cm。将t=5s代入表达式可得,介质中任一点的位移为y=5cos(20-4x)cm。
更多 “平面简谐波的表达式为y=5cos(3t-4x+5)cm,下列表述中正确的是(  )。A.x=3.5cm处介质在t=3s时振动速度与波的传播速度相同 B.x=4.0cm介质的振动方程为y=5cos11cm C.t=5s时介质中任一点的位移为y=5cos(20-4x)cm D.波沿x轴负方向传播,波速为0.75cm/s ” 相关考题
考题 一平面简谐波在t=0时的波形曲线如图所示,设波沿x轴正向传播,波速υ=1.6×10-1m/s,则该波的角频率ω=______rad/s,坐标原点处的质元作简谐振动的表达式为y=_____(SI)。

考题 如图所示,两列平面余弦波分别沿S1P和S2P传播,波速均为10cm/s。t时刻,在波源S1和S2处质点的振动方程分别为y1=3cos10t(cm),y2=4cos10t(cm),振动方向均垂直纸面。那么,P处质点振动的振幅为(  )cm。 A.1 B.5 C.7 D.9

考题 一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为: A. y = Acos(2πt/T-2πx/λ-π/2) E. y = Acos(2πt/T+2πx/λ+π/2) C. y = Acos(2πt/T+2πx/λ-π/2) D. y = Acos(2πt/T-2πx/λ+π/2)

考题 一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u) B.y=Acosω(t-L/u) C.y=Acos(ωt+L/u) D.y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acoswt,波速为u,那么x=0处质点的振动方程为(  )。A.y=Acosw(t+L/u) B.y=Acosw(t-L/u) C.y=Acos(wt+L/u) D.y=Acos(wt+L/u)

考题 一平面简谐波沿x轴负方向传播,其振幅A=0.01m,频率υ=550Hz,波速u=330m·s-1。若t=0时,坐标原点O处质元达到负的最大位移,则该波的表达式为( )。A、y=0.01cos[2π(550t+1.67x)+π] B、y=0.01cos[2π(550t-1.67x)+π] C、y=0.01cos[2π(550t+1.67x)-π] D、y=0.01cos[2π(550t-1.67x)-π]

考题 一平面简谐波沿x轴正向传播,已知P点(xp=L)的振动方程为y=Acos(ωt+φ0),则波动方程为( )。A. B. C.y=Acos[t-(x/u)] D.

考题 如图2-8所示,一平面简谐波沿x轴正向传播,t=0时的波形图如图所示,波速u= 20m/s,则P处介质点的振动方程是()。 A. y = 0.2cos(4πt + π/3)(SI) B. y = 0.2cos(4πt -π/3)(SI) C.y= 0.2cos(4πt + 2π/3)(SI) D. y= 0.2cos(4πt -2π/3)(SI)

考题 一平面简谐波表达式为y=-0.05sinπ(t-2x)(SI),则该波的频率v(Hz)、波速u(m/s)及波线上各点振动的振幅A(m)依次为:

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为( )。A.y=Acosπ[t-(x-5)/4] B.y=Acosπ[t-(x+5)/4] C.y=Acosπ[t+(x+5)/4] D.y=Acosπ[t+(x-5)/4]

考题 一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为: A. y=Acos[w(t+l/u)+Φ0] B.y=Acos[w(t-l/u)+Φ0] C. y=Acos[wt+l/u+Φ0] D. y=Acos[wt-l/u+Φ0]

考题 一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u。若以原点处的质元经平衡位置正方向运动时作为计时的起点,则该波的波动方程是( )。A.y=Acos[ω(t-x/u)+π/2] B.y=Acos[ω(t-x/u)-π/2] C.y=Acos[ω(t-x/u)+π] D.y=Acos[ω(t-x/u)-π/3]

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt, 波速为u=4m/s,则波动方程为: A. y=Acos[t-(x-5)/4] B. y=Acos[t+(x+5)/4] C. y=Acos[t-(x+5)/4] D. y=Acos[t+(x-5)/4]

考题 一质点沿y轴方向做简谐振动,振幅为A,周期为T,平衡位置在坐标原点。在t=0时刻,质点位于y正向最大位移处,以此振动质点为波源,传播的横波波长为λ,则沿x轴正方向传播的横波方程为( )。

考题 一平面简谐波沿X轴正向传播,已知x=1(1λ)处质点的振动方程为y=Acoswt+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[w(t+1/u)+φ0]B、y=ACOS[w(t-1/u)+φ0]C、y=Acos[wt+1/u+φ0]D、y=Acos[wt-1/u+φ0]

考题 一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A、y=Acos(wt+L/u)B、y=Acos(wt-L/u)C、y=Acosw(t+L/u)D、y=Acosow(t-L/u)

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acos(∞t+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[ω(t+L/u)+φ0]B、y=Acos[ω(t-L/u)+φ0]C、y=Acos[ωt+L/u+φ0]D、y=Acos[ωt-L/u+φ0]

考题 一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A、y=Acos(2πt/T-2πx/λ-1/2π)B、y=Acos(2πt/T+2πx/λ+1/2π)C、y=Acos(2πt/T+2πx/λ-1/2π)D、y=Acos(2πt/T-2πx/λ+1/2π)

考题 一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]

考题 已知平面简谐波的波动方程y=0.3cos(2πt-πx)(m),则该波源的振动初相位为(),波的传播速度为()m.s-1,波长()m。

考题 单选题一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A y=Acos(wt+L/u)B y=Acos(wt-L/u)C y=Acosw(t+L/u)D y=Acosow(t-L/u)

考题 单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A y=Acosω[t-(x-L)/u]B y=Acosω[t-(x+L)/u]C y=Acosω[t+(x+L)/u]D y=Acosω[t+(x-L)/u]