网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
只有一组对边平行的四边形是()。
A

平行四边形

B

长方形

C

正方形

D

梯形


参考答案

参考解析
解析: 暂无解析
更多 “单选题只有一组对边平行的四边形是()。A 平行四边形B 长方形C 正方形D 梯形” 相关考题
考题 “平行四边形”这个概念的内涵包括()。 A、邻边不等的斜平行四边形、矩形、菱形、正方形的集合B、两组对边分别平行C、对角线互相平分D、两组对边分别相等

考题 高手指教有关教师资格考试题:下列命题正确的是( ) 下列命题正确的是()A、一组对边平行,另一组对边相等的四边形为平行四边形B、顺次连接矩形四边中点所得四边形仍为矩形C、既为轴对称图形,又是中心对称图形的四边形为正方形D、以一条对角线所在直线为对称轴的平行四边形为菱形

考题 一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是:( )A.121/9 B.121/16 C.9/4 D.3/2

考题 平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成( )个平行四边形

考题 初中数学《平行四边形的性质》 一、考题回顾 二、考题解析 【教学过程】 (一)引入新课 我们一起来观察下图中的竹篱笆格子和汽车的防护链, 由此得到: 平行四边形性质1:平行四边形的对边相等. 平行四边形性质2:平行四边形的对角相等. (三)课堂练习 【答辩题目解析】 1.说说本节课教材的地位与作用。 2.谈一谈本节课的教法。

考题 初中数学《平行四边形的判定》 一、考题回顾 二、考题解析 【教学过程】 (一)引入新课 提出问题:平行四边形的定义是什么?平行四边形有什么性质?我们可以说怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢? 由此引出今天学习的内容是《平行四边形的判定》。 (二)探索新知 通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。 实验一:取两长两短的四根木条用小钉铰在一起,做成一个四边形,如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形; 实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。 引导学生归纳得出结论: 两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形。 提问学生:你能根据平行四边形的定义证明它们吗? 引导学生以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明。明确平行四边形的判定定理与相应的性质定理互为逆定理。 提问学生:求证四边形ABCD是平行四边形,说一说有哪些证明方法? 预设:可以利用定义,或证明两组对边分别相等,或两组对角分别相等。 继续提问:思考两组对边分别平行或相等的四边形是平行四边形,如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢? 学生活动:组织学生前后桌四人一组进行讨论,教师巡视指导。引导学生猜想一组对边平行且相等的四边形是平行四边形,并进行证明。 通过充分讨论和分享,结合学生的回答,教师明确:平行四边形判定的另一种方法,即一组对边平行且相等的四边形是平行四边形。 提问学生:现在你有多少种判定一个四边形是平行四边形的方法? 引导学生回顾平行四边形判定的四种方法。 (三)课堂练习 基础题:练习题1,引导学生利用平行四边形判定的四种方法进行证明。 提升题:练习题2,解决生活实际问题。 (四)小结作业 提问:今天有什么收获? 引导学生回顾:本节课学习了平行四边形判定的四种方法。 课后梯度作业:必做题和选做题。 【板书设计】 1.平行四边形的判定定理都有哪些? 2.为什么要学习平行四边形的判定?

考题 《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务: (1)设计平行四边形性质的教学目标;(6分) (2)设计两种让学生发现平行四边形性质的教学流程;(12分) (3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)

考题 下列说法:①一组对边相等,另一组对边平行的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③有三个角是直角的四边形是矩形;④正方形的对角线相等。其中错误的有(  ) A.1个 B.2个 C.3个 D.4个

考题 下列说法中,不正确的是(  )。A.两组对边分别相等的四边形是平行四边形 B.平行四边形的对角线互相平分 C.平行四边形的对边相等 D.对角线相等的四边形是平行四边形

考题 圆内接四边形ABCD的一组对边AD、BC的延长线相交于户,对角线AC、BD相交于Q点,则图中共有相似三角形()。A、4对B、2对C、1对D、3对

考题 下列关于特殊四边形的表述中,正确的有()A、一组对边平行且相等的四边形是平行四边形B、四条边都相等的四边形是矩形C、对角线互相垂直的四边形是菱形D、正方形既是矩形又是菱形

考题 下列说法: ①一组对边相等,另一组对边平行的四边形是平行四边形; ②对角线互相垂直的四边形是菱形; ③有三个角是直角的四边形是矩形; ④正方形的对角线相等。 其中错误的有()A、1个B、2个C、3个D、4个

考题 日常生活中,我们随处可见四边形的物体,那么有两组对边平行的四边形,这样的四边形邻角()

考题 “两组对边分别平行”是平行四边形的本质属性,而“两条对角线互相平分”是平行四边形的固有属性。

考题 “只有一组对边平行的四边形叫做梯形”属于()A、属加种差定义B、描述性定义C、约定式定义D、发生定义

考题 由点的速度合成定理给出的速度平行四边形可以看出,绝对速度是该平行四边形的对角线。

考题 面积相等的长方形和平行四边形,,它们的周长()。A、长方形大于平行四边形B、平行四边形大于长方形C、相等D、无法比较

考题 一个四边形,有两组对边平行,四个角都是直角,这个图形不可能是()。A、平行四边形B、长方形C、正方形

考题 只有一组对边平行的四边形是()。A、平行四边形B、长方形C、正方形D、梯形

考题 由平行四边形法则可知:力的合成()。A、可有多种结果B、无解C、只有两种结果D、只有一个结果

考题 单选题面积相等的长方形和平行四边形,,它们的周长()。A 长方形大于平行四边形B 平行四边形大于长方形C 相等D 无法比较

考题 多选题下列关于特殊四边形的表述中,正确的有()A一组对边平行且相等的四边形是平行四边形B四条边都相等的四边形是矩形C对角线互相垂直的四边形是菱形D正方形既是矩形又是菱形

考题 判断题“两组对边分别平行”是平行四边形的本质属性,而“两条对角线互相平分”是平行四边形的固有属性。A 对B 错

考题 单选题下列说法: ①一组对边相等,另一组对边平行的四边形是平行四边形; ②对角线互相垂直的四边形是菱形; ③有三个角是直角的四边形是矩形; ④正方形的对角线相等。 其中错误的有()A 1个B 2个C 3个D 4个

考题 单选题一个四边形,有两组对边平行,四个角都是直角,这个图形不可能是()。A 平行四边形B 长方形C 正方形

考题 单选题下列命题中,真命题的个数有(  ).①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A 3个B 2个C 1个D 0个

考题 单选题“只有一组对边平行的四边形叫做梯形”属于()A 属加种差定义B 描述性定义C 约定式定义D 发生定义