网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
问答题
我把大背包里的A东西全B都倒出来C,开始仔细D回想我的背包历史。
参考答案
参考解析
解析:
暂无解析
更多 “问答题我把大背包里的A东西全B都倒出来C,开始仔细D回想我的背包历史。” 相关考题
考题
*部分背包问题可有贪心法求解:计算Pi/Wi数据结构:w[i]:第i个背包的重量;p[i]:第i个背包的价值;1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):A.求最多可放入的重量。
考题
考虑一个背包问题,共有n=5个物品,背包容量为W=10,物品的重量和价值分别为:w={2,2,6,5,4},v={6,3,5,4,6},求背包问题的最大装包价值。若此为0-1背包问题,分析该问题具有最优子结构,定义递归式为其中c(i,j)表示i个物品、容量为j的0-1背包问题的最大装包价值,最终要求解c(n,W)。 采用自底向上的动态规划方法求解,得到最大装包价值为(62),算法的时间复杂度为(63)。 若此为部分背包问题,首先采用归并排序算法,根据物品的单位重量价值从大到小排序,然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量,则得到的最大装包价值为(64),算法的时间复杂度为(65)。A.11B.14C.15D.16.67
考题
考虑下述背包问题的实例。有5件物品,背包容量为100,每件物品的价值和重量如下表所示,并已经按照物品的单位重量价值从大到小徘好序,根据物品单位重量价值大优先的策略装入背包中,则采用了(请作答此空)设计策略。考虑0/1背包问题(每件物品或者全部放入或者全部不装入背包)和部分背包问题(物品可以部分装入背包),求解该实例,得到的最大价值分别为( )。
A.分治
B.贪心
C.动态规划
D.回溯
考题
考虑下述背包问题的实例。有5件物品,背包容量为100,每件物品的价值和重量如下表所示,并已经按照物品的单位重量价值从大到小徘好序,根据物品单位重量价值大优先的策略装入背包中,则采用了( )设计策略。考虑0/1背包问题(每件物品或者全部放入或者全部不装入背包)和部分背包问题(物品可以部分装入背包),求解该实例,得到的最大价值分别为(请作答此空)。
A.605和630
B.605和605
C.430和630
D.630和430
考题
关于0-1背包问题以下描述正确的是()A、可以使用贪心算法找到最优解B、能找到多项式时间的有效算法C、使用教材介绍的动态规划方法可求解任意0-1背包问题D、对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题
考题
对于0-1背包问题和背包问题的解法,下面()答案解释正确。A、0-1背包问题和背包问题都可用贪心算法求解B、0-1背包问题可用贪心算法求解,但背包问题则不能用贪心算法求解C、0-1背包问题不能用贪心算法求解,但可以使用动态规划或搜索算法求解,而背包问题则可以用贪心算法求解D、因为0-1背包问题不具有最优子结构性质,所以不能用贪心算法求解
考题
将白、蓝、红三种颜色的背包装到纸箱里,每个纸箱里放5个背包,颜色任意。质检部门需要对产品进行拆箱检查,问至少选多少个纸箱,才能保证一定有两个纸箱里三种颜色的背包数量都一致()A、20B、19C、22D、21
考题
对于如下描述的背包问题,请计算最终装入背包的最大价值和以及各个物品装入背包的数量。 背包容量:C=50千克。3件物品。物品1重20千克,价值100元;物品2重20千克,价值120元;物品3重30千克,价值90元。
考题
举反例证明0/1背包问题若使用的算法是按照pi/wi的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解(此题说明0/1背包问题与背包问题的不同)。
考题
单选题关于0-1背包问题以下描述正确的是()A
可以使用贪心算法找到最优解B
能找到多项式时间的有效算法C
使用教材介绍的动态规划方法可求解任意0-1背包问题D
对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题
考题
判断题对安检对象携带的背包进行手工复检作业时,安检员向安检对象仔细询问包内吴斌情况后,即可打开背包开始检查包内物品。A
对B
错
热门标签
最新试卷