网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
问答题
一垄断厂商的成本函数为TC=Q2,其面临的需求为P=120-Q。求:  (1)垄断的价格和产量是多少?  (2)政府向该厂商征收一次性税赋100元,这时,厂商的产量是多少?  (3)政府改为对每销售一单位产品征税20元,这时,厂商的价格和产量是多少?  (4)政府改用价格管制,为了使社会最优,即社会效率无损失,价格的上限是多少?要不要规定下限?

参考答案

参考解析
解析: 暂无解析
更多 “问答题一垄断厂商的成本函数为TC=Q2,其面临的需求为P=120-Q。求:  (1)垄断的价格和产量是多少?  (2)政府向该厂商征收一次性税赋100元,这时,厂商的产量是多少?  (3)政府改为对每销售一单位产品征税20元,这时,厂商的价格和产量是多少?  (4)政府改用价格管制,为了使社会最优,即社会效率无损失,价格的上限是多少?要不要规定下限?” 相关考题
考题 某成本不变的完全竞争行业的代表性厂商的长期总成本函数为LTC=Q3-60Q2+1500Q,产品价格P=975美元,市场需求函数为P=9600-2Q,试求:(1)利润极大时的产量、平均成本和利润。(2)该行业长期均衡时的价格和厂商的产量。(3)用图形表示上述(1)和(2)。(4)若市场需求曲线是P=9600-2Q,试问长期均衡中留存于该行业的厂商人数是多少?

考题 已知一垄断企业成本函数为:TC=5Q2 +20Q+1000,产品的需求函数为: Q=140-P,求:(1)利润最大化时的产量、价格和利润,(2)厂商是否从事生产?

考题 已知厂商面临的需求曲线是:Q=50-2P。(1)求厂商的边际收益函数。(2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

考题 一个实行支配型价格领导的寡头垄断行业中,行业的需求曲线为P=300-Q,其中P是支配型厂商制定的能为其他厂商接受的产品价格(按单位美元计),Q是总需求量,其他厂商的总供给量为Qr,Qr=49P。支配型厂商的边际成本是2.96Qb,Qb是该厂商的产量。若该厂商想达到最大利润,应生产多少?产品价格应为多少?在这一价格上整个行业的产量将是多少?(Q、Qb、Qr都以百万单位表示)

考题 考虑一个双寡头古诺模型,p和Q分别表示市场价格和产品销售总量;q1和q2分别表示厂商1和厂商2的产量;MC表示厂商生产的边际成本,假设两个厂商生产的产品完全同质。 如果两个厂商同质,且在均衡价格上的需求弹性(以绝对值定义)为2,那么均衡时厂商的价格加成率是多少?

考题 假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?

考题 某产品的市场需求曲线为Q=2O -P,市场中有n个生产成本相同的厂商,单个厂商的成本函数为c=2q2+2,问: (1)若该市场为竞争性市场,市场均衡时的市场价格和单个企业的产量是多少? (2)长期均衡时该市场中最多有多少个厂商? (3)若该市场为寡头垄断市场,古诺均衡时的市场价格和单个企业的产量是多少?

考题 垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。

考题 假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。

考题 假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?

考题 市场上有两家企业E和D生产灯泡,市场需求函数Q=100-P。两家企业的成本函数Ci=10qi 试求:(1)假设两方经理不认识,不共谋,都像短期完全竞争者那样行动,则该情形下的均衡价格和两厂商的均衡产量和利润各是多少?(2)假设两个企业换经理人了,要按照寡头垄断来,使用古诺模型,该情形下的均衡价格和两厂商均衡产量和利润各是多少?(3)E企业知道D企业准备按照古诺均衡来决定产量,现在E企业先按照斯塔克尔伯格模型来决定产量,则该情形下的均衡价格和两厂商的均衡产量和利润各是多少?(4)假设两方经理互相认识,两方共谋,则该情形下的均衡价格和两厂商的均衡产量和利润各是多少?

考题 假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。

考题 假设一个垄断厂商面临的需求曲线为P =10 -2Q,成本函数为TC= Q2 +4Q。 (1)求利润极大时的产量、价格和利润。 (2)如果政府企图对该厂商采取限价措施迫使其达到完全竞争行业所能达到的产量水平,则限价应为多少?此时该垄断厂商是否仍有利润?

考题 考虑一个双寡头古诺模型,p和Q分别表示市场价格和产品销售总量;q1和q2分别表示厂商1和厂商2的产量;MC表示厂商生产的边际成本,假设两个厂商生产的产品完全同质。 如果两个厂商的生产均面临不变的边际成本1/2,且反需求曲线为p=1-Q,则均衡时两个企业的产量分别是多少?

考题 一家垄断厂商具有不变的边际成本C,其面临的市场需求曲线为D(P),具有不变的需求弹性2。该厂商追求利润最大化,回答以下问题:(1)求该厂商制定的垄断价格。此价格与竞争价格相比,有何差异?(2)如果政府对这个垄断厂商每单位产量征收t元的从量税,那么此时价格是多少?与问题(1)中没有税收的情况相比,价格有何变化?如果改为对利润征收税率为r的利润税,价格又将如何变化? (3)回到问题(1)中没有税收的情况。如果政府想使垄断厂商生产社会最优产量,考虑对该厂商的边际成本进行补贴,那么该选择怎样的补贴水平?

考题 已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。

考题 已知完全竞争市场上单个厂商的长期成本函数为LTC =Q3-20Q2+200Q,市场的产品价格为P= 600 . (1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡?为什么? (3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?

考题 一家垄断厂商具有不变的边际成本C,其面临的市场需求曲线为D(P),具有不变的需求弹性2。该厂商追求利润最大化,回答以下问题:如果政府对这个垄断厂商每单位产量征收t元的从量税,那么此时价格是多少?与问题(1)中没有税收的情况相比,价格有何变化?如果改为对利润征收税率为r的利润税,价格又将如何变化?

考题 已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q2。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?

考题 已知完全竞争市场上单个厂商的长期成本函数为LTC=Q3-20Q2+200Q,市场的产品价格为P=600。 求:(1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡,为什么?(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?

考题 已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

考题 问答题已知完全竞争市场上单个厂商的长期成本函数为LTC=Q3-20Q2+200Q,市场的产品价格为P=600。 求:(1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡,为什么?(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?

考题 问答题已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

考题 问答题假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和利润。

考题 问答题某垄断厂商的反需求函数为P=150-3Q,成本函数为TC=15Q+0.5Q2。  (1)计算利润最大化的价格和产出。  (2)如果厂商追求销售收入最大化,其价格和产出又如何?  (3)政府决定价格不准高于40元,该厂商的产量为多少?会造成过剩还是短缺?

考题 问答题一个实行支配型价格领导的寡头垄断行业中,行业的需求曲线为P=300-Q,其中P是支配型厂商制定的能为其他厂商接受的产品价格(按单位美元计),Q是总需求量,其他厂商的总供给量为Qr,Qr=49P。支配型厂商的边际成本是2.96Qb,Qb是该厂商的产量。若该厂商想达到最大利润,应生产多少?产品价格应为多少?在这一价格上整个行业的产量将是多少?(Q、Qb、Qr都以百万单位表示)

考题 问答题已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。