网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.
  (Ⅰ)求矩阵A;
  (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.


参考答案

参考解析
解析:
更多 “已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.   (Ⅰ)求矩阵A;   (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.” 相关考题
考题 已知x1(t)和x2(t)的傅里叶变换分别为X1(f)和X2(f),则卷积x1(t)*x2(t)的傅里叶变换为()。 A、X1(f)X2(f)B、X1(f)*X2(f)C、X1(-f)X2(-f)D、X1(-f)*X2(-f)

考题 设总体X~N(μ,σ2),X1,X2,X3,X4是正态总体X的一个样本,为样本均值,S2为样本方差,若μ为未知参数且σ为已知参数,下列随机变量中属于统计量的有( )。A.X1-X2+X3B.2X3-μC.D.E.

考题 已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x2,x2 (0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

考题 设X~N(μ,σ2),均值μ已知,而方差σ2未知,X1,X2,X3为总体X的样本,下列各式是统计量的有( )。A.X1+3X2+σ2B.X1+2μC.max(X1,X2,X3)D.(X2-μ)2/σE.

考题 二次型f=2x21+3x22+3x23+4x2x3可以由正交变换化作标准型,下列中正确的标准型是( )。 A.2y21+y22-5y23 B.2y21+y22+5y23 C.y21+y22+5y23 D.2y21+y22+4y23

考题 已知二次函数f(x)的二次项系数为实数a,且其图像与直线2x+y=0交点横坐标为1和3. (1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式; (2)若f(x)的最大值为正数,求实数n的取值范围.

考题 已知二次型的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解

考题 二次型, (1)求f(x1,x2,x3)的矩阵的特征值. (2)设f(x1,x2,x3)的规范形为. 求a

考题 设二次型f(x1,x2,x3)=(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.

考题 设二次型,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为 A.A单叶双曲面 B.双叶双曲面 C.椭球面 D.柱面

考题 要使得二次型f(x1,x2 ,x3)=x12+2tx1x2+x22-2x1x3+2x2x3+2x32 为正定的,则t的取值条件是: A.-10 D.t

考题 设二次型f(x1,x2,x3)在正交变换为x=py下的标准形为 若Q=(e1-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准型为( )。 A. B. C. D.

考题 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)一g(x)=X3+x2+1,则f(1)+g(1)=( )。A.-3 B.-1 C.1 D.3

考题 二次型f(x1,x2,x3)=(λ-1)x12+λx22+(λ+1)x32,当满足( )时,是正定二次型。 A. λ>-1 B. λ>0 C. λ>1 D. λ≥1

考题 设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。 A.x=x1及x=x2都必不是f(x)的极值点 B.只有x=x1是f(x)的极值点 C.x=x1及x=x2都有可能是f(x)的极值点 D.只有x=x2是f(x)的极值点

考题 设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.

考题 已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

考题 已知函数定义Functionf(x1%,x2%)as integer,则下列调用语句正确的是()A、a=f(x,y)B、call f(x,y)C、f(x,y)D、fxy

考题 已知消费者的收入为I,全部用来购买X1,X2,且MU1/P1>MU2/P2,若要达到消费者均衡,需要()A、增加的X1购买,减少X2的购买B、增加X2的购买,减少X1的购买C、X1,X2都增加D、X1,X2都减少。

考题 设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A、x=x1及x=x2都必不是f(x)的极值点B、只有x=x1是f(x)的极值点C、x=x1及x=x2都有可能是f(x)的极值点D、只有x=x2是f(x)的极值点

考题 单选题设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A x=x1及x=x2都必不是f(x)的极值点B 只有x=x1是f(x)的极值点C x=x1及x=x2都有可能是f(x)的极值点D 只有x=x2是f(x)的极值点

考题 问答题设f(x)在[a,b]上连续,在(a,b)内可微,若a≥0,证明在(a,b)内存在三个数x1、x2、x3,使f′(x1)=(b+a)f′(x2)/(2x2)=(b2+ab+a2)f′(x3)/(3x32)。

考题 单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )A f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

考题 问答题设f(x)在(a,b)内二阶可导,且f″(x)≥0,证明:对于(a,b)内任意两点x1、x2及0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。

考题 单选题已知被测量Y与输入量X1、X2、X3、X4、X5、的估计值分别为y、x1、x2、x3、x4、x5,它们之间的函数关系为y=x1+x2+x3+x4+x5,若输入量X1、X2、X3、X4、X5服从半宽度相同的均匀分布,且相互独立,则被测量Y在相应变化区间内接近( )分布。A 正态B 均匀C 三角D 反正弦

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 单选题二次型f(x1,x2,x3)=λx21+(λ-1)λ22+(λ2+1)x23,当满足()时,是正定二次型。()A λ0B λ-1C λ1D 以上选项均不成立