网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: 说明X和Y之间是替代品、互补品还是独立商品


参考答案

参考解析
解析:X与Y两种商品之间的需求交叉价格弹性为:

也就是说随着商品X的价格上升,消费者将会增加对商品Y的购买。因此两种商品是替代品的关系。
更多 “某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: 说明X和Y之间是替代品、互补品还是独立商品” 相关考题
考题 计算题:若消费者张某的收入为270元,他在商品X和Y的无差异曲线上的斜率为dY/dX=-20/Y的点上实现均衡。已知商品X和商品Y的价格分别为PX=2,PY=5,那么此时张某将消费X和Y各多少?

考题 已知效用函数为U=㏒aX+㏒aY,预算约束为:PXX+PYY=M。求:①消费者均衡条件②X与Y的需求函数③X与Y的需求的点价格弹性

考题 消费者每周花360元买,Y两种商品。Px=3元,Py=2元,他的效用函数为U=2x2Y,在均衡状态下,他每周买X,Y各多少?

考题 某消费者收入为120元,用于购买X和Y两种商品,X商品的价格为20元,Y商品的价格为10元,求:(1)计算出该消费者所购买的X和Y有多少种数量组合,各种组合的X商品和Y商品各是多少?(2)作出一条预算线。(3)所购买的X商品为4,Y商品为6时,应该是哪一点?在不在预算线上?为什么?(4)所购买的X商品为3,Y商品为3时,应该是哪一点?在不在预算线上?为什么?

考题 假设两种商品X和Y,其中Y为正常商品,请用收入效应和替代效应描述:(1)当X为正常商品;(2)当X为劣等商品;(3)当X为吉芬商品时,X价格下降消费者对X和Y最佳配置的影响,请画图说明。

考题 小华只消费两种商品X和y,她的收入为500美元,效用函数为U(z,y)=max{z,y),其中,z是商品X的消费量,y是商品Y的消费量。商品Y的价格为1,商品X的价格从1/3上升至2,则等价变化为( )。 A.11111美元 B.1566. 67美元 C.1000美元 D.333.33美元

考题 某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:假定商品x由一个具有规模报酬不变生产技术的垄断厂商提供,单位成本为0.4元。求产品定价、消费者剩余、生产者剩余。

考题 某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:写出该消费者对商品x的需求函数。

考题 某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: X、Y的需求函数

考题 某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: (1)若PX =2元,PY=1元,I=10元,求最大的总效用及收入边际效用 (2)若PY上升到了4元,为保持问题(1)中的总效用不变,消费者需要花多少钱?

考题 设某消费者的效用函数为柯布-道格拉斯类型的,即U=x^αy^β,商品x和商品y的价格分别为Px和Py,消费者收入为M,α和β为常数切α+β=1 (1)求该消费者关于商品x和商品y的需求函数。 (2)证明:当商品x和y的价格及消费者的收入均以相同的比例变化时,消费者对两商品的需求关系维持不变; (3)证明:该消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。

考题 设某消费者的效用函数为柯布一道格拉斯类型的,即 商品x和商品y的价格分别为 消费者的收人为M,a和β为常数,且a+ β=1。 (1)求该消费者关于商品X和商品y的需求函数。 (2)证明当商品X和商品y的价格以及消费者的收入同时变动一个比例时,消费者对两商品的需求关系维持不变。 (3)证明消费者效用函数中的参数a和β分别为商品x和商品y的消费支出占消费者收入的份额。

考题 假设消费者对于苹果x和香蕉y的效用函数为:U(x,y)=(x+1)y。消费者的收入水平为I,苹果和香蕉的市场价格分别为px、和py。计算间接效用函数和支出函数。

考题 一个消费者有49元用以购买X和Y,X和Y都是离散商品,X的价格是每单位5元,y的价格是每单位11元,他的效用函数式U(X,Y)=3X2+6Y,他将如何选择他的消费组合?( ) A.仅消费Y B.两种商品都消费,但消费X更多 C.仅消费X D.两种商品都消费,但消费Y更多

考题 假设消费者对于苹果x和香蕉y的效用函数为:U(x,y)=(x+1)y。消费者的收入水平为I,苹果和香蕉的市场价格分别为px、和py。以香蕉为例,验证斯拉茨基方程。

考题 假设消费者对于苹果x和香蕉y的效用函数为:U(x,y)=(x+1)y。消费者的收入水平为I,苹果和香蕉的市场价格分别为px、和py。为追求效用最大化,求解消费者的马歇尔需求函数。香蕉是苹果的总替代品还是总互补品?

考题 某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:若x由两个厂商供给,单个产品成本为0.4,两个厂商之间进行古诺竞争,求均衡时的市场定价、生产者剩余和消费者剩余

考题 某消费者收入为120元,用于购买X和Y两种商品,X商品的价格PX=20元,Y品的价格PY=10元。所购买的X商品为3,Y商品为3时,是否在消费可能线上?它说明了什么?

考题 假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为Px=2元,Py=5元,求:张某对X和Y两种商品的最佳组合。

考题 若消费者张某消费X和Y两种商品的效用函数U=X2Y2 ,张某收入为500元,X和Y的价格分别为PX =2元,PY=5元,求:       (1)张某的消费均衡组合点。  (2)若政府给予消费者消费X以价格补贴,即消费者可以原价格的50%购买X,则张某将消费X和Y各多少?  (3)若某工会愿意接纳张某为会员,会费为100元,但张某可以50%的价格购买X,则张某是否应该加入该工会?

考题 若X和Y两种商品交叉价格弹性为,则X与Y是()。A、替代品B、正常商品C、劣等品D、互补品

考题 I=Px•X+Py•Y是消费者的()A、需求函数B、效用函数C、预算约束方程D、不确定

考题 计算题:假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为PX=2元,PY=5元,求:张某对X和Y两种商品的最佳组合。

考题 问答题已知效用函数为U=㏒aX+㏒aY,预算约束为:PXX+PYY=M。求:①消费者均衡条件②X与Y的需求函数③X与Y的需求的点价格弹性

考题 问答题某消费者收入为120元,用于购买X和Y两种商品,X商品的价格PX=20元,Y品的价格PY=10元。所购买的X商品为3,Y商品为3时,是否在消费可能线上?它说明了什么?

考题 问答题若消费者张某消费X和Y两种商品的效用函数U=X2Y2 ,张某收入为500元,X和Y的价格分别为PX =2元,PY=5元,求:       (1)张某的消费均衡组合点。  (2)若政府给予消费者消费X以价格补贴,即消费者可以原价格的50%购买X,则张某将消费X和Y各多少?  (3)若某工会愿意接纳张某为会员,会费为100元,但张某可以50%的价格购买X,则张某是否应该加入该工会?

考题 单选题若X和Y两种商品交叉价格弹性为,则X与Y是()。A 替代品B 正常商品C 劣等品D 互补品