网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
高中数学《空间向量》
二、考题解析
【教学过程】
(一)引入课题
(课件)引入:有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?
提问:我们研究的问题是三个力的问题,力在数学中可以看成是什么?这三个向量和以前我们学过的向量有什么不同?
(学生得出:这是三个向量不共面)
追问:不共面的向量问题能直接用平面向量来解决么?解决这类问题需要空间向量的知识。这节课我们就来学习空间向量。
(二)探求新知
1.生活实例感知
空间向量我们随处可见,同学们能不能举出一些例子?(学生举例)
再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量)
2.类比概念形成
接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。师生一起回忆平面向量概念、向量的模、零向量、单位向量、相反向量、相等向量等,引导学生理解空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,
(学生:在空间中,既有大小又有方向的量)
现在请同学们阅读教材,找出空间向量的相关定义,用类比的方法记忆并填写课件的表格:
3.类比运算定律形成
在数学中引入一种量以后,一个很自然的问题就是研究它们的运算,空间向量的运算我们也采用与平面向量类比的方法,那么我们首先来复习回顾一下平面向量的加减运算。(课件)复习回顾:(找学生回答)
提问:同学课下的复习很好。我们先来探讨这样一个问题:对于两个向量来说空间向量和平面向量有没有区别?
学生探讨研究:平面向量可在同一平面内平移,而空间向量也可在空间中平移。平移后的向量与原向量是同一向量。由此得出:空间任意两个向量都可转化为共面向量。
引导学生得出任意的空间中的两个向量的运算与平面向量的结论一致,这样我们就能够定义空间向量的加法和减法运算。
同样地,用类比(表格)形式对比给出空间向量的相关定义,采用填空形式填写下列有关内容:(课件)
(三)巩固提高
课堂练习例1.
(四)小结作业
这节课,我们在平面向量的基础上学习了平面向量,接下来给同学们两分钟的时间总结一下这节课的主要内容。(学生总结)
通过这节课的学习,我们学会了空间向量的有关概念,加减运算及其运算律以及空间向量的加减运算在空间几何体中的应用。
作业:(1)课后练习题1、2;
(2)思考题:共始点的两个不共线向量的加法满足平行四边形法则。和向量是平行四边形的对角线。请问,共始点的三个不共面的向量满足什么法则?和向量是什么向量?
【板书设计】
【答辩题目解析】
1.平行向量是如何定义的?
2.空间向量在高中数学中具有怎样的地位和作用?
二、考题解析
【教学过程】
(一)引入课题
(课件)引入:有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?
提问:我们研究的问题是三个力的问题,力在数学中可以看成是什么?这三个向量和以前我们学过的向量有什么不同?
(学生得出:这是三个向量不共面)
追问:不共面的向量问题能直接用平面向量来解决么?解决这类问题需要空间向量的知识。这节课我们就来学习空间向量。
(二)探求新知
1.生活实例感知
空间向量我们随处可见,同学们能不能举出一些例子?(学生举例)
再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量)
2.类比概念形成
接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。师生一起回忆平面向量概念、向量的模、零向量、单位向量、相反向量、相等向量等,引导学生理解空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,
(学生:在空间中,既有大小又有方向的量)
现在请同学们阅读教材,找出空间向量的相关定义,用类比的方法记忆并填写课件的表格:
3.类比运算定律形成
在数学中引入一种量以后,一个很自然的问题就是研究它们的运算,空间向量的运算我们也采用与平面向量类比的方法,那么我们首先来复习回顾一下平面向量的加减运算。(课件)复习回顾:(找学生回答)
提问:同学课下的复习很好。我们先来探讨这样一个问题:对于两个向量来说空间向量和平面向量有没有区别?
学生探讨研究:平面向量可在同一平面内平移,而空间向量也可在空间中平移。平移后的向量与原向量是同一向量。由此得出:空间任意两个向量都可转化为共面向量。
引导学生得出任意的空间中的两个向量的运算与平面向量的结论一致,这样我们就能够定义空间向量的加法和减法运算。
同样地,用类比(表格)形式对比给出空间向量的相关定义,采用填空形式填写下列有关内容:(课件)
(三)巩固提高
课堂练习例1.
(四)小结作业
这节课,我们在平面向量的基础上学习了平面向量,接下来给同学们两分钟的时间总结一下这节课的主要内容。(学生总结)
通过这节课的学习,我们学会了空间向量的有关概念,加减运算及其运算律以及空间向量的加减运算在空间几何体中的应用。
作业:(1)课后练习题1、2;
(2)思考题:共始点的两个不共线向量的加法满足平行四边形法则。和向量是平行四边形的对角线。请问,共始点的三个不共面的向量满足什么法则?和向量是什么向量?
【板书设计】
【答辩题目解析】
1.平行向量是如何定义的?
2.空间向量在高中数学中具有怎样的地位和作用?
参考答案
参考解析
解析:1、平行向量又称共线向量,指的是方向相同或相反的两个非零向量。规定零向量和任何向量都平行。
2、用空间向量处理某些立体几何问题,可以为学生提供新的视角。在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率。
2、用空间向量处理某些立体几何问题,可以为学生提供新的视角。在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率。
更多 “高中数学《空间向量》 二、考题解析 【教学过程】 (一)引入课题 (课件)引入:有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? 提问:我们研究的问题是三个力的问题,力在数学中可以看成是什么?这三个向量和以前我们学过的向量有什么不同? (学生得出:这是三个向量不共面) 追问:不共面的向量问题能直接用平面向量来解决么?解决这类问题需要空间向量的知识。这节课我们就来学习空间向量。 (二)探求新知 1.生活实例感知 空间向量我们随处可见,同学们能不能举出一些例子?(学生举例) 再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) 2.类比概念形成 接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。师生一起回忆平面向量概念、向量的模、零向量、单位向量、相反向量、相等向量等,引导学生理解空间向量就是把向量放到空间中了,请同学们给空间向量下个定义, (学生:在空间中,既有大小又有方向的量) 现在请同学们阅读教材,找出空间向量的相关定义,用类比的方法记忆并填写课件的表格: 3.类比运算定律形成 在数学中引入一种量以后,一个很自然的问题就是研究它们的运算,空间向量的运算我们也采用与平面向量类比的方法,那么我们首先来复习回顾一下平面向量的加减运算。(课件)复习回顾:(找学生回答) 提问:同学课下的复习很好。我们先来探讨这样一个问题:对于两个向量来说空间向量和平面向量有没有区别? 学生探讨研究:平面向量可在同一平面内平移,而空间向量也可在空间中平移。平移后的向量与原向量是同一向量。由此得出:空间任意两个向量都可转化为共面向量。 引导学生得出任意的空间中的两个向量的运算与平面向量的结论一致,这样我们就能够定义空间向量的加法和减法运算。 同样地,用类比(表格)形式对比给出空间向量的相关定义,采用填空形式填写下列有关内容:(课件) (三)巩固提高 课堂练习例1. (四)小结作业 这节课,我们在平面向量的基础上学习了平面向量,接下来给同学们两分钟的时间总结一下这节课的主要内容。(学生总结) 通过这节课的学习,我们学会了空间向量的有关概念,加减运算及其运算律以及空间向量的加减运算在空间几何体中的应用。 作业:(1)课后练习题1、2; (2)思考题:共始点的两个不共线向量的加法满足平行四边形法则。和向量是平行四边形的对角线。请问,共始点的三个不共面的向量满足什么法则?和向量是什么向量? 【板书设计】 【答辩题目解析】 1.平行向量是如何定义的? 2.空间向量在高中数学中具有怎样的地位和作用?” 相关考题
考题
患者男性,56岁,常规检查心电图后,还做了心电向量图检查。心电向量图与心电图的关系是A、空间心电向量投影在平面上形成心电图B、空间心电向量第1次投影在平面上形成心电图,第2次投影在直线上形成心电向量图C、空间心电向量第2次投影在直线上形成心电图D、空间心电向量第1次投影在平面上形成平面心电向量图,平面心电向量图第2次投影在导联轴上形成心电图E、心电向量图和心电图均是记录随时间而变化的电压曲线关于心电向量图的表述,不正确的是A、分析额面、侧面和水平面心电向量图可对空间向量环进行描述B、临床上通常描记的心电向量图是一个平面向量图C、心电向量图描记的是一个环形图D、其纵坐标反映的是向量在该坐标上的强弱E、其横坐标反映的是时间关于心电图产生原理的表述,不正确的是A、心电图是额面和横面心电向量环投影在导联轴上而形成B、心电图记录的是两个电极之间电位差随时间变化的曲线C、常规12导联心电图主要反映额面心电向量的变化D、心电图纵坐标反映向量的强弱变化E、心电图横坐标反映的是时间变化
考题
向量是近代数学中重要和基本的数学概念之一,下面是高中必修课程数学4“平面向量”第一章第一节“平面向量的实际背景及基本概念”的部分教材内容。
阅读教材,回答下列问题:
(1)谈谈“向量”在高中数学课程中的作用;(6分)
(2)分析上面教材的设计思路;(6分)
(3)确定“平面向量概念”的教学目标和教学重难点;(8分)
(4)根据教材,设计一个“平面向量概念”引入的教学片断要求:引导学生经历从实际背景抽象概念的过程。(10分)
考题
向量是近代数学中重要和基本的数学概念之一,下面是高中必修课程数学4“平面向量”第二章第一节“平面向量的实际背景及基本概念”的部分教材内容。
阅读教材,回答下列问题:
(1)谈谈“向量”在高中数学课程中的作用;
(2)分析上面教材的设计思路
(3)确定“平面向量概念”教学目标和教学重难点;
(4)根据教材,设计一个“平面向量概念”引入的教学片段要求;引导学生从实际背景抽象概念的过程。
考题
下列关于高中数学课程的变化内容,说法不正确的是()。A、高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B、高中数学课程中,概率的学习重点是如何计数C、算法是培养逻辑推理能力的非常好的载体D、集合论是一个重要的数学分支
考题
实地址方式下,主存最低()的存储空间用于中断向量表。向量号8的中断向量保存在物理地址()开始的()个连续字节空间;如果其内容从低地址开始依次是00H、23H、10H、F0H,则其中断服务程序的首地址是()
考题
患者男性,56岁,常规检查心电图后,还做了心电向量图检查。心电向量图与心电图的关系是()A、空间心电向量投影在平面上形成心电图B、空间心电向量第1次投影在平面上形成心电图,第2次投影在直线上形成心电向量图C、空间心电向量第2次投影在直线上形成心电图D、空间心电向量第1次投影在平面上形成平面心电向量图,平面心电向量图第2次投影在导联轴上形成心电图E、心电向量图和心电图均是记录随时间而变化的电压曲线
考题
单选题心电向量图与心电图的关系是( )。A
空间心电向量第1次投影在乎面上形成平面心电向量图,平面心电向量图第2次投影在导联轴上形成心电图B
空间心电向量投影在平面上形成心电图C
空间心电向量第2次投影在直线上形成心电图D
空间心电向量第1次投影在平面上形成心电图,第2次投影在直线上形成心电向量图E
心电向量图和心电图均是记录随时间而变化的电压曲线
考题
填空题实地址方式下,主存最低()的存储空间用于中断向量表。向量号8的中断向量保存在物理地址()开始的()个连续字节空间;如果其内容从低地址开始依次是00H、23H、10H、F0H,则其中断服务程序的首地址是()
考题
单选题下列关于高中数学课程的变化内容,说法不正确的是()。A
高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B
高中数学课程中,概率的学习重点是如何计数C
算法是培养逻辑推理能力的非常好的载体D
集合论是一个重要的数学分支
考题
单选题关于心电向量图的表述,错误的是( )。A
其纵坐标反映的是向量在该坐标上的强弱B
分析额面、侧面和水平面心电向量图可对空间向量环进行描述C
心电向量图描记的是一个环形图D
临床上通常描记的心电向量图是一个平面向量图E
其横坐标反映的是时间
热门标签
最新试卷