网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤n)的地址的公式为其中入为每个数组元素所占用的存储单元空间。
A.LOC(aij)=LOC(a11)+[i×(i+1)/2+j]*λ
B.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1)]*λ
C.LOC(aij)=LOC(a11)+[i×(i-1)/2+j]*λ
D.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1))]*λ 下列题目基于下图所示的二叉树:
参考答案
更多 “ 按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤n)的地址的公式为其中入为每个数组元素所占用的存储单元空间。A.LOC(aij)=LOC(a11)+[i×(i+1)/2+j]*λB.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1)]*λC.LOC(aij)=LOC(a11)+[i×(i-1)/2+j]*λD.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1))]*λ 下列题目基于下图所示的二叉树: ” 相关考题
考题
(3)按行优先顺序存储下三角矩阵 Ann 的非零元素,则计算非零元素 aij (1≤j≤i≤n)的地址的公式为Loc(aij) = 【3】 + i * (i–1) / 2 + (j–1)。x, W6 r6 I1 q
考题
按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为( )。 A.LOC(aij)=LOC(a11)+i×(i+1)/2+j B.LOC(aij)=LOC(all)+i×(i+1)/2+(j-1) C.LOC(aij)=LOC(all)+i×(i-1)/2+(j+1) D.LOC(aij)=LOC(all)+i×(i-1)/2+(j-1)
考题
按行优先顺序存储下三角矩阵的非零元素,则计算非零元素a/subij1≤j≤i≤n)的地址的公式为A.LOC(aij)=LOC(all)+i×(i+1)/2+jB.LOC(aij)=LOC(all)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(all)+i×(i-1)/2+jD.LOC(aij)=LOC(all)+i×(i-1)/2+(j-1)
考题
按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为( )。A.LOC(aij)=LOC(aij)+i×(i+1)/2+jB.LOC(aij)=LOC(aij)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(aij)+i×(i-1)/2+jD.LOC(aij)=LOC(aij)+i×(i-1)/2+(j-1)
热门标签
最新试卷