网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
阅读以下说明和流程图,回答问题1和问题2。
【说明】
设8位二进制代码B0B1…B7中的最高位B0为奇偶校验位。对于任何给定的代码
B1B2…B7,可按下式计算偶校验位:
其中,“”表示“异或”运算。
下面的流程图描述了计算偶校验位的过程。
【流程图】
注:流程图中,循环开始的说明按照“循环变量名:循环初值,循环终值,增量”格式描述。
将流程图中的(1)~(4)处补充完整。
参考答案
更多 “ 阅读以下说明和流程图,回答问题1和问题2。【说明】设8位二进制代码B0B1…B7中的最高位B0为奇偶校验位。对于任何给定的代码B1B2…B7,可按下式计算偶校验位:其中,“”表示“异或”运算。下面的流程图描述了计算偶校验位的过程。【流程图】注:流程图中,循环开始的说明按照“循环变量名:循环初值,循环终值,增量”格式描述。将流程图中的(1)~(4)处补充完整。 ” 相关考题
考题
阅读以下说明和流程图,回答问题1~2,将解答填入对应的解答栏内。[说明]下面的流程图描述了计算自然数1到N(N≥1)之和的过程。[流程图][问题1] 将流程图中的(1)~(3)处补充完整。[问题2] 为使流程图能计算并输出1*3+2*4+…+N*(N+2)的值,A框内应填写(4);为使流程图能计算并输出不大于N的全体奇数之和,B框内应填写(5)。
考题
阅读下列说明和流程图2-3,将应填入(n)的字句写在答题纸的对应栏内。【说明】下面的流程图描述了对8位二进制整数求补的算法。该算法的计算过程如下:从二进制数的低位(最右位)开始,依次向高位逐位查看,直到首次遇到“1”时,停止查看。然后,对该“1”位左面的更高位(如果有的话),逐位求反,所得的结果就是对原二进制数求补的结果。例如:对二进制整数10101000求补的结果是01011000。设8位二进制整数中的各位,从低位到高位,依次存放在整型数组BIT的B1T[1]~BIT[8]中。例如,二进制整数10101000存放在数组BIT后,就有BIT[1]=0,BIT[2]=0,…,BIT[7] =0,BIT[8]=1。若流程图中存在空操作,则用NOP表示。【流程图】注:流程图中(1)处按“循环变量名:循环初值,增量,循环终值”格式描述。
考题
关于奇偶校验码,以下说法不正确的是___________。
a.字节"10000110”码的奇校验位为"0”b.字节"11100110”码的偶校验位为"1”c.奇偶校验码能够发现一个字节中任意多位出错d.奇偶校验码通常为1个字节补充1个二进制位,称为校验位,通过设置校验位的值为"1”或"0”,使这个字节和校验位的"1”的个数为奇数或偶数
考题
阅读下列说明和流程图,将应填入(n)的语句写在对应栏内。【流程图】下面的流程图描述了对16位二进制整数求补的算法。计算过程是:从二进制数的低位 (最右位)开始,依次向高位逐位查看,直到首次遇到“1”时,停止查看。然后,对该“1”位左面的更高位(如果有的话),逐位求反,所得的结果就是对原二进制数求补的结果。例如:对二进制整数10111001 10101000求补的结果是01000110 01011000。设16位二进制整数中的各位,从低位到高位,依次存放在整型数组BIT的BIT[1]~BIT[16]中。例如,二进制整数10111001 10101000存放在数组BIT后,就有BIT1[1]=0, BIT[2]=0,……,BIT[15]=0,BIT[16]=1。流程图(如图1所示)中(1)处按“循环变量名:循环初值,增量,循环终值”格式描述。若流程图中存在空操作,则用NOP表示。
考题
阅读以下说明和流程图,回答问题1-2,将解答填入对应的解答栏内。[说明]下面的流程图采用欧几里得算法,实现了计算两正整数最大公约数的功能。给定正整数m和 n,假定m大于等于n,算法的主要步骤为:(1)以n除m并令r为所得的余数;(2)若r等于0,算法结束;n即为所求;(3)将n和r分别赋给m和n,返回步骤(1)。[流程图][问题1] 将流程图中的(1)~(4)处补充完整。[问题2] 若输入的m和n分别为27和21,则A中循环体被执行的次数是(5)。
考题
阅读以下说明和流程图,回答问题将解答填入对应栏。[说明]下面的流程图,用来完成计算一组数组中的中值,其方法是:将数组中的一个值与其他值比较,并计算大于等于被比较数的数值的个数,以及小于等于被比较数的数值的个数,如果两数都大于n/2,则已经找到了中值,否则继续之前的步骤。注:流程中循环开始的说明按照“循环变量:循环初值,循环终值,增量”格式描述;[问题]将流程图的(1)~(5)处补充完整。
考题
●试题一阅读下列说明和流程图,将应填入(n)的语句写在答题纸的对应栏内。【流程图】图1下面的流程图描述了对16位二进制整数求补的算法。计算过程是:从二进制数的低位(最右位)开始,依次向高位逐位查看,直到首次遇到"1"时,停止查看。然后,对该"1"位左面的更高位(如果有的话),逐位求反,所得的结果就是对原二进制数求补的结果。例如:对二进制整数10111001 10101000求补的结果是01000110 01011000。设16位二进制整数中的各位,从低位到高位,依次存放在整型数组BIT的BIT[1]~BIT[16]中。例如,二进制整数10111001 10101000存放在数组BIT后,就有BIT1[1]=0,BIT[2]=0,……,BIT[15]=0,BIT[16]=1。流程图(如图1所示)中 (1) 处按"循环变量名:循环初值,增量,循环终值"格式描述。若流程图中存在空操作,则用NOP表示。
热门标签
最新试卷