网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。

【说明】对于大于1的正整数n,(x+1)n可展开为下面流程图的作用是计算(x+1)n展开后的各项系数(i=0,1,....,n)并依次存放在数组A[0...n]中。方法是依次计算k=2,3,..,n时(x+1)k的展开系数并存入数组A,在此过程中,对任一确定的k,利用关系式,按照i递减的顺序逐步计算并将结果存储在数组A中。其中,和都为1,因此可直接设置A[0]、A[k]的值为1。 例如,计算(x+1)3的过程如下:先计算(x+1)2(即k=2)的各项系数,然后计算(x+1)3(即k=3)的各项系数。K=2时,需要计算,和,并存入A[0],A[1]和A[2],其中A[0]和A[1]的值已有,因此将(即A[1])和即(A[0])相加得到的值并存入A[1]。k=3时,需要计算,和和,先计算出(由)得到并存入A[2],再计算(由得到)并存入A[1]。


参考答案

更多 “ 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。【说明】对于大于1的正整数n,(x+1)n可展开为下面流程图的作用是计算(x+1)n展开后的各项系数(i=0,1,....,n)并依次存放在数组A[0...n]中。方法是依次计算k=2,3,..,n时(x+1)k的展开系数并存入数组A,在此过程中,对任一确定的k,利用关系式,按照i递减的顺序逐步计算并将结果存储在数组A中。其中,和都为1,因此可直接设置A[0]、A[k]的值为1。 例如,计算(x+1)3的过程如下:先计算(x+1)2(即k=2)的各项系数,然后计算(x+1)3(即k=3)的各项系数。K=2时,需要计算,和,并存入A[0],A[1]和A[2],其中A[0]和A[1]的值已有,因此将(即A[1])和即(A[0])相加得到的值并存入A[1]。k=3时,需要计算,和和,先计算出(由)得到并存入A[2],再计算(由得到)并存入A[1]。 ” 相关考题
考题 阅读以下说明和流程图,填补流程图中的空缺(1)一(5),将解答填入答题纸的对应栏内。【说明】下面的流程图采用公式ex=1+x+x2/2 1+x3/3 1+x4/4 1+…+xn/n!+???计算ex的近似值。设x位于区间(0,1),该流程图的算法要点是逐步累积计算每项xx/n!的值(作为T),再逐步累加T值得到所需的结果s。当T值小于10-5时,结束计算。【流程图】

考题 阅读下面的说明,回答问题1~问题4,将解答填入答题纸对应的解答栏内。[说明]阅读以下说明,回答问题1~问题4,将解答填入答题纸对应的解答栏内。windows Server 2003是一个多任务多用户的操作系统,能够以集中或分布的方式实现各种应用服务器角色,是目前应用比较广的操作系统之一。Windows内置许多应用服务功能,将下表中(1)~(5)处空缺的服务器名称填写在答题纸对应的解答栏内。(1)

考题 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面流程图的功能是:在给定的一个整数序列中查找最长的连续递增子序列。设序列存放在数组 A[1:n](n2)中,要求寻找最长递增子序列 A[K: K+L-1] (即A[K]A[K+1]A[K+L-1])。流程图中,用 Kj 和Lj 分别表示动态子序列的起始下标和长度,最后输出最长递增子序列的起始下标 K 和长度 L。 例如,对于序列 A={1 ,2,4,4 ,5,6,8,9,4,5,8},将输出K=4, L=5。【流程图】注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1,格式为: 循环控制变量=初值,终值

考题 ?????? 阅读以下说明和流程图,填补流程图中的空缺(1)~(5),将解答填入答题纸的对应栏内。【说明】本流程图旨在统计一本电子书中各个关键词出现的次数。假设已经对该书从头到尾依次分离出各个关键词{A(i)li=l,…,n}(n>1)}.其中包含了很多重复项,经下面的流程处理后,从中挑选出所有不同的关键词共m个{K(j)[j=l,…,m},而每个关键词K(j)出现的次数为NK(j).j=l,…,m。??????

考题 阅读以下说明和Java程序,填补代码中的空缺(1)~(6),将解答填入答题纸的对应栏内。【说明】很多依托扑克牌进行的游戏都要先洗牌。下面的Java代码运行时先生成一副扑克牌,洗牌后再按顺序打印每张牌的点数和花色。【Java代码】

考题 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 [说明] 本流程图旨在统计一本电子书中各个关键词出现的次数。假设已经对该书从头到尾依次分离出各个关键词{A(i)|i=1,…,n}(n>1)},其中包含了很多重复项,经下面的流程处理后,从中挑选出所有不同的关键词共m个{K(j)|j=1,…,m},而每个关键词K(j)出现的次数为NK(j),j=1,…,m。 [流程图]

考题 阅读说明和流程图,填补流程图中的空缺(1)?(5),将答案填入答题纸对应栏内。【说明】本流程图用于计算菲波那契数列{a1=1,a2=1,…,an=an-1+an-2!n=3,4,…}的前n项(n>=2) 之和S。例如,菲波那契数列前6项之和为20。计算过程中,当前项之前的两项分别动态地保存在变量A和B中。【流程图】

考题 第一题 阅读以下说明和流程图,填补流程图中的空缺,将解答填入答题纸的对应栏内。 【说明】 对于大于1的正整数n,(x+1)n可展开为 问题:1.1 【流程图】 注:循环开始框内应给出循环控制变量的初值和终值,默认递增值为1。 格式为:循环控制变量=初值,终值,递增值。

考题 阅读下列说明,补充(1)-(9),将解答填入答题纸的对应栏内。

考题 阅读以下说明和流程图,填写流程图中的空缺,将解答填入答题纸的对应栏内。【说明】设[a1b1],[a2b2],...[anbn]是数轴上从左到右排列的n个互不重叠的区间(a1