网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
关于线性规划的原问题和对偶问题,下列说法正确的是()
- A、若原问题为无界解,则对偶问题也为无界解
- B、若原问题无可行解,其对偶问题具有无界解或无可行解
- C、若原问题存在可行解,其对偶问题必存在可行解
- D、若原问题存在可行解,其对偶问题无可行解
参考答案
更多 “关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解” 相关考题
考题
下列说法正确的为() 。
A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
考题
互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解
B.对偶问题有可行解,原问题可能无可行解
C.若最优解存在,则最优解相同
D.一个问题无可行解,则另一个问题具有无界解
考题
判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解
考题
如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正确的是()。A、原问题的约束条件“≥”,对应的对偶变量“≥0”B、原问题的约束条件为“=”,对应的对偶变量为自由变量C、原问题的变量“≥0”,对应的对偶约束“≥”D、原问题的变量“≤O”对应的对偶约束“≤”E、原问题的变量无符号限制,对应的对偶约束“=”
考题
问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
多选题如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正确的是()。A原问题的约束条件“≥”,对应的对偶变量“≥0”B原问题的约束条件为“=”,对应的对偶变量为自由变量C原问题的变量“≥0”,对应的对偶约束“≥”D原问题的变量“≤O”对应的对偶约束“≤”E原问题的变量无符号限制,对应的对偶约束“=”
考题
单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A
若原问题为无界解,则对偶问题也为无界解B
若原问题无可行解,其对偶问题具有无界解或无可行解C
若原问题存在可行解,其对偶问题必存在可行解D
若原问题存在可行解,其对偶问题无可行解
考题
单选题若求最大化的线性规划问题为原问题,关于其对偶问题的说法有误的是()A
其对偶的对偶为原问题B
对偶变量的符号取决于原问题的约束方程的符号C
对偶问题的约束条件的符号取决于原问题的决策变量的符号D
若原问题的决策变量X10,则其对偶问题的第一个约束不等式取号
考题
单选题互为对偶的两个线性规划问题,下面说法不正确的是()A
原问题约束的个数对应对偶问题变量的个数B
原问题第i个约束取等号,对应对偶问题的第i个变量无约束C
原问题第i个约束取大于等于号,对应对偶问题的第i个变量大于等于零。D
原问题的价值系数,对应对偶问题的资源限量。
考题
判断题对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。A
对B
错
热门标签
最新试卷