网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()


参考答案

更多 “如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()” 相关考题
考题 若线性规划问题有可行解,则一定存在基本可行解。()

考题 下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

考题 若原问题和对偶问题均存在可行解,则两者均存在____。

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在 B.如果可行解区存在,则一定有界 C.如果可行解区存在但无界,则一定不存在最优解 D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

考题 若原问题有可行解,则其对偶问题也一定有可行解。

考题 一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A、(P)可行D.无解,则(P)无有限最优解B、(P)、D.均有可行解,则都有最优解C、(P)有可行解,则D.有最优解D、(P)D.互为对偶E、E.(P)有最优解,则有可行解

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解

考题 关于线性规划问题,叙述正确的为()。A、其可行解一定存在B、其最优解一定存在C、其可行解必是最优解D、其最优解若存在,在可行解中必有最优解

考题 互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

考题 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。

考题 若原问题无可行解,其对偶问题也一定无可行解。

考题 对偶问题有可行解,则原问题也有可行解()

考题 如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

考题 对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。

考题 若线性规划问题存在可行基,则()A、一定有最优解B、一定有可行解C、可能无可行解D、可能具有无界解

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A 若原问题为无界解,则对偶问题也为无界解B 若原问题无可行解,其对偶问题具有无界解或无可行解C 若原问题存在可行解,其对偶问题必存在可行解D 若原问题存在可行解,其对偶问题无可行解

考题 单选题互为对偶的两个问题存在关系()A 原问题无可行解,对偶问题也无可行解B 对偶问题有可行解,原问题也有可行解C 原问题有最优解解,对偶问题可能没有最优解D 原问题无界解,对偶问题无可行解

考题 判断题如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()A 对B 错

考题 多选题一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A(P)可行D.无解,则(P)无有限最优解B(P)、D.均有可行解,则都有最优解C(P)有可行解,则D.有最优解D(P)D.互为对偶EE.(P)有最优解,则有可行解

考题 判断题若原问题有可行解,则其对偶问题也一定有可行解。A 对B 错

考题 单选题关于线性规划问题,叙述正确的为()。A 其可行解一定存在B 其最优解一定存在C 其可行解必是最优解D 其最优解若存在,在可行解中必有最优解

考题 判断题若线性规划问题有可行解,则一定存在基本可行解。A 对B 错