网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

5、矩阵连乘问题的不同子问题个数为 O(n^2)


参考答案和解析
正确
更多 “5、矩阵连乘问题的不同子问题个数为 O(n^2)” 相关考题
考题 背包问题的贪心算法所需的计算时间为() A.O(n2n)B.O(nlogn)C.O(2n)D.O(n)

考题 矩阵连乘问题的算法可由动态规划设计实现。() 此题为判断题(对,错)。

考题 直接选择排序的时间复杂度为()。(n为元素个数)A.O(n)B.O(log2n)C.O(nlog2n)D.O(n2)

考题 关于主对角线(从左上角到右下角)对称的矩阵为对称矩阵;如果一个矩阵中的各个元素取值为0或1,那么该矩阵为01矩阵,求大小为N*N的01对称矩阵的个数?()A.power(2,n);B.power(2,n*n/2);C.power(2,(n*n+n)/2);D.power(2,(n*n-n)/2);

考题 用二分法进行插入排序,记录移动个数为A.O(nlog2n)B.O(n2)C.O(log2n)D.O(n)

考题 在一个元素个数为N的数组里,找到升序排在N/5位置的元素的最优算法时间复杂度是()A.O(n)B.O(nlogn)C.O(n(logn)2)D.O(n3/2)

考题 设平衡的二叉排序树(AVL树)的结点个数为n,则其平均检索长度为A.O(1)B.O(log2n)C.O(n)D.O(n log2n)

考题 设平衡的---X排序树(AVL树)的结点个数为n,则其平均检索长度为A.O(1)B.O(log2n)C.O(n)D.O(nlog2n)

考题 试题四(15分)阅读下列说明和C代码,回答问题1至问题3,将解答写在答题纸的对应栏内。【说明】某工程计算中要完成多个矩阵相乘(链乘)的计算任务。两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am*n*Bn*p,需要m*n*p次乘法运算。矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110*100,A2100*5,A35*50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。矩阵链乘问题可描述为:给定n个矩阵A1,A2,….An,矩阵Ai的维数为pi-1*Pi,其中i = 1,2,….n。确定一种乘法顺序,使得这n个矩阵相乘时进行乘法的运算次数最少。由于可能的计算顺序数量非常庞大,对较大的n,用蛮力法确定计算顺序是不实际的。经过对问题进行分析,发现矩阵链乘问题具有最优子结构,即若A1*A2*…*An的一个最优计算顺序从第k个矩阵处断开,即分为A1*A2*….Ak和Ak+1*Ak+2*…*An两个子问题,则该最优解应该包含A1*A2*…*Ak的一个最优计算顺序和Ak+1*Ak+2*…An的一个最优计算顺序。据此构造递归式,其中,cost[i][j]表示Ai+1*Ai+2*...Aj+1的最优计算的计算代价。最终需要求解cost[0][n-1]。【C代码】算法实现采用自底向上的计算过程。首先计算两个矩阵相乘的计算量,然后依次计算3个矩阵、4个矩阵、…、n个矩阵相乘的最小计算量及最优计算顺序。下面是算法的C语言实现。(1)主要变量说明n:矩阵数seq[]:矩阵维数序列cost[][]:二维数组,长度为n*n,其中元素cost[i][j]表示Ai+1*Ai+2*…Aj+1的最优计算的计算代价trace[][]:二维数组,长度为n*n,其中元素trace[i][j]表示Ai+1*Ai+2*Aj+1的最优计算对应的划分位置,即k(2)函数cmmdefine N 100intcost[N][N];inttrace[N][N];int cmm(int n,int seq[]){int tempCost;int tempTrace;int i,j,k,p;int temp;for( i=0;in;i++){ cost[i][i] =0;}for(p=1;pn;p++){for(i=0; (1) ;i++){(2);tempCost = -1;for(k = i;kj;k++){temp = (3) ;if(tempCost==-1||tempCosttemp){tempCost = temp;(4) ;}}cost[i][j] = tempCost;trace[i][j] = tempTrace;}}return cost[0][n-1];}【问题1】(8分)根据以上说明和C代码,填充C代码中的空(1)~(4)。【问题2】(4分)根据以上说明和C代码,该问题采用了 (5) 算法设计策略,时间复杂度 (6) 。(用O符号表示)【问题3】(3分)考虑实例n=6,各个矩阵的维数:A1为5*10,A2为10*3,A3为3*12,A4为12*5,A5为5*50,A6为50*6,即维数序列为5,10,3,12,5,50,6。则根据上述C代码得到的一个最优计算顺序为 (7) (用加括号方式表示计算顺序),所需要的乘法运算次数为 (8) 。

考题 两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p 多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M{i+i),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为:其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(Pi-i.)*Pi采用自底向上的方法:实现该算法来确定n个矩阵相乘的顺序,其时间复杂度为( 64 )。若四个矩阵M1. M2、M3.,M4相乘的维度序列为2、6、3、10.3,采用上述算法求解,则乘法次数为( 65 )。A.O(N2)B.O(N2Lgn)C.O(N3)D.O(n3lgn)

考题 某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为 (请作答此空) ,若问题的规模增加了16倍,则运行时间增加 ( ) 倍。A.O(n) B.O(nlgn) C.O(n2) D.O(n2lgn)

考题 采用贪心算法保证能求得最优解的问题是( ) A.0-1背包 B.矩阵连乘 C.最长公共子序列 D.邻分(分数)背包

考题 已知矩阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pim【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为( ),算法的时间复杂度为( ),空间复杂度为(请作答此空) 给定一个实例,(POPi........P5)=(20.15.4.10.20.25)最优计算顺序为( )A.O(n^2) B.O(n*2lgn) C.O(n^3) D.O(2n)

考题 阅读下列说明和C代码,回答问题1至问题3 【说明】 某工程计算中要完成多个矩阵相乘(链乘)的计算任务。 两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am×n*Bn×p,需要m*n*p次乘法运算。 矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110×100,A2100×5,A35×50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。 矩阵链乘问题可描述为:给定n个矩阵

考题 两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p。多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M(i+1),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为: 其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(pi-1)*pi采用自底向上的方法实现该算法来确定n个矩阵相乘的顺序,其时间复杂度为( )A.O(n2) B.O(n2lgn) C.O(n3) D.O(n3lgn)

考题 已知阳阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pi,m【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为(请作答此空),算法的时间复杂度为( ),空间复杂度为( ) 给定一个实例,(P0Pi........P5)=(20.15.4.10.20.25)最优计算顺序为( )A.分治法 B.动态规划法 C.贪心法 D.回溯法

考题 已知矩阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pim【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为( ),算法的时间复杂度为( ),空间复杂度为( ) 给定一个实例,(POPi........P5)=(20.15.4.10.20.25)最优计算顺序为(请作答此空)A.(((A1*A2)*A3)*A4)*A5 B.A1*(A2*(A3*(A4*A5))) C.((A1*A2)*A3)*(A4*A5) D.(A1*A2)*((A3*A4)*A5)

考题 某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为(62),若问题的规模增加了16倍,则运行时间增加(63)倍。 A.O(n) B.O(nlgn) C.O(n2) D.O(n2lgn)

考题 有4个矩阵{A1,A2,A3,A4},其中Ai与Ai+1是可乘的,i=1,2,3,连乘积为A1A2A3A4。在这个四矩阵连乘积问题中,请问不同子问题的个数总共有多少个,并请把所有的子问题列出来。

考题 矩阵连乘问题的算法可由()设计实现。

考题 对于m个发点、n个收点的运输问题,叙述错误的是()A、该问题的系数矩阵有m×n列B、该问题的系数矩阵有m+n行C、该问题的系数矩阵的秩必为m+n-1D、该问题的最优解必唯一

考题 采用快速排序进行排序,问题规模为n,则时间复杂度是()A、O(n3/2)B、O(n*n)C、O(n)D、O(n*log2n)

考题 背包问题的贪心算法所需的计算时间为()A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)

考题 0-1背包问题的回溯算法所需的计算时间为()A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)

考题 设一维数组中有n个数组元素,则读取第i个数组元素的平均时间复杂度为()。A、O(n)B、O(nlog2n)C、O(1)D、O(n2)

考题 问答题有4个矩阵{A1,A2,A3,A4},其中Ai与Ai+1是可乘的,i=1,2,3,连乘积为A1A2A3A4。在这个四矩阵连乘积问题中,请问不同子问题的个数总共有多少个,并请把所有的子问题列出来。

考题 单选题对于m个发点、n个收点的运输问题,叙述错误的是()A 该问题的系数矩阵有m×n列B 该问题的系数矩阵有m+n行C 该问题的系数矩阵的秩必为m+n-1D 该问题的最优解必唯一

考题 填空题矩阵连乘问题的算法可由()设计实现。