网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

绘制开环对数频率特性曲线的步骤是什么?


参考答案和解析
(1)将G K (s)写成各典型环节的乘积形式 可见该传递函数由一个积分环节和一个惯性环节组成。分别画出两个环节的对数幅频特性和对数相频特性曲线,如图5-36①和②所示,然后将其叠加,就得到了G K (s)的开环系统的对数频率特性曲线,如图5-36所示。 (2)将G K (s)写成各典型环节的乘积形式 将交接频率从小到大标在ω轴上。ω 1 =0.5是惯性环节 的交接频率;ω 2 =1是惯性环节 的交接频率;在ω 1 =0.5之前为0dB线,过了ω 1 =0.5之后斜率变为-20dB/dec的直线至ω 2 =1,之后直线斜率变为-400dB/dec,就得到了G K (s)的开环系统的对数频率特性曲线,再画出两个惯性环节的相频特性曲线,然后将两条曲线叠加就得到了系统的开环对数相频特性曲线。系统的开环对数频率特性曲线如图5-37所示。 (3)将G K (s)写成各典型环节的乘积形式 该传递函数由4个环节组成,其中两个积分环节决定了低频段的斜率为-40dB/dec。ω 1 =0.5是惯性环节 的交接频率;ω 2 =1是惯性环节 的交接频率;在ω 1 =0.5之前斜率为-40dB/dec,过了ω 1 =0.5之后斜率变为-60dB/dec的直线至ω 2 =1,之后直线斜率变为-80dB/dec,就得到了G K (s)的开环系统的对数频率特性曲线,再画出4个环节的相频特性曲线,然后将4条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-38所示。 (4)将G K (s)写成各典型环节的乘积形式 该传递函数由3个环节组成,其中积分环节决定了低频段的斜率为-20dB/dec,比例环节决定了低频段的高度:L(ω)=20lg5=14dB。ω 1 =50是惯性环节 的交接频率;在ω 1 =50之前斜率为-20dB/dec,过了ω 1 =50之后斜率变为-40dB/dec的直线,就得到了G K (s)的开环系统的对数频率特性曲线,再画出三个环节的相频特性曲线,然后将三条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-39所示。 (5)将G K (s)写成各典型环节的乘积形式 该传递函数由两个积分环节、一个比例环节和一个惯性环节组成,其中积分环节决定了低频段的斜率为-40dB/dec,比例环节决定了低频段的高度为L(ω)=20lg5=14dB。ω 1 =50是惯性环节 的转折频率;在ω 1 =50之前斜率为-40dB/dec,过了ω 1 =50之后斜率变为-60dB/dec的直线,将直线连接起来就得到了G K (s)的开环系统的对数频率特性曲线,再画出4个环节的相频特性曲线,然后将4条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-40所示。 (6)将G K (s)写成各典型环节的乘积形式 该传递函数由一个比例微分环节和一个惯性环节组成。其中 是比例微分环节(τs+1)的转折频率;在 之前斜率为0dB线,过了 之后斜率变为+20dB/dec的直线, 是惯性环节的转折频率,在 之前斜率为0dB线,过了 之后斜率变为-20dB/dec的直线,将直线连接起来就得到了G K (s)的开环系统的对数频率特性曲线,再画出两个环节的相频特性曲线,然后将两条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-41所示。 (7)将G K (s)写成各典型环节的乘积形式 该传递函数由一个比例微分环节和一个惯性环节组成。其中 是比例微分环节(τs+1)的转折频率;在 之前斜率为0dB线,过了 之后斜率变为+20dB/dec的直线, 是惯性环节的转折频率,在 之前斜率为0dB线,过了 之后斜率变为-20dB/dec的直线,将直线连接起来就得到了G K (s)的开环系统的对数频率特性曲线,再画出两个环节的相频特性曲线,然后将两条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-42所示。 (8)将G K (s)写成各典型环节的乘积形式 该传递函数的对数幅频特性与(6)相同 相频特性为 =arctanτω+arctanTω 画出两个环节的相频特性曲线,然后将两条曲线叠加就得到了开环系统的对数相频特性曲线。系统的开环对数频率特性曲线如图5-43所示。
更多 “绘制开环对数频率特性曲线的步骤是什么?” 相关考题
考题 幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的0分贝线。() 此题为判断题(对,错)。

考题 开环对数频率特性沿W轴向左平移时() A、Wc减少,r增加B、Wc减少,r不变C、Wc增加,r不变D、Wc不变,r也不变

考题 奈奎斯特稳定性判据是利用系统的()来判据闭环系统稳定性的一个判别准则。A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性

考题 系统开环频率特性的几何表示方法有对数频率特性和bode图。()

考题 之所以可以利用叠加法求系统的开环对数频率特性是因为系统的频率特性具有()。 A. 齐次性B. 叠加性C. 线性D. 微分性

考题 乃奎斯特判据是一种应用( )来判别闭环系统稳定性的判据。A. 开环频率特性曲线B. 积分环节的对数曲线C. 相频曲线D. 零分贝线

考题 系统开环对数幅频特性曲线与( )的交点频率称为系统的截止频率。A. 0o 线B. 积分环节的对数曲线C. 相频曲线D. 零分贝线

考题 幅相频率特性曲线与对数频率特性曲线的关系是()。A.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的-20分贝线B.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的+20分贝线C.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的零分贝线D.幅相频率特性曲线上的单位圆相当于对数频率特性曲线上的+1分贝线

考题 开环对数频率特性的高频段决定系统的()。 A、型别B、稳态误差C、动态性能D、抗干扰能力

考题 串联环节的对数频率特性为各串联环节的对数频率特性的()。

考题 串联环节的对数频率特性为各串联环节的对数频率特性的()A、叠加B、相乘C、相除D、相减

考题 频率特性的表示法有,()、 对数频率特性曲线和尼科尔斯曲线。

考题 开环对数幅频特性曲线低频积的形状只决定于系统的开环增益K和积分环节的数目V(对最小相位系统而言)。()

考题 增大开环增益K将对系统频率特性曲线的影响是()。A、使对数幅频特性曲线向上平移B、使对数幅频特性曲线低频段的斜率改变C、使相频特性曲线产生平移D、对相频特性曲线不产生任何影响

考题 在控制器的参数整定中属于理论整定法得是()A、经验凑试法B、衰减曲线法C、响应曲线法D、对数频率特性法

考题 绘制承潮潮位景积曲线的步骤是什么?

考题 对数频率特性曲线

考题 下列关于开环对数频率特性曲线―Bode图,说法不正确的是()A、开环对视幅频特性L(ω)低频段的斜率表征系统的类型,高度表征开环传递系数的大小B、高频段的分贝值越高,表征系统的抗干扰能力越强C、L(ω)中频段的斜率、宽度h以及截止频率ωc表征系统的动态性能D、低频段能全面表征系统稳态性能

考题 频率特性常用的几种图示法有()A、奈奎斯特曲线B、伯德图C、对数幅相特性曲线D、根轨迹图

考题 串联环节的对数频率特性为各串联环节对数频率特性的()

考题 开环频率特性的幅值等于1所对应得频率称为();在开环频率特性的相角等于-180度的角频率上,开环频率特性的幅值的倒数称为系统的()。

考题 下列描述不属于频率法的优点的是()。A、根据系统的开环频率特性可以判断闭环系统是否稳定B、此分析方法具有直观、准确的优点C、可根据频率特性曲线的形状选择系统的结构和参数,满足时域指标要求D、频率特性可以由实验方法求得

考题 在频域设计中,一般地说,开环频率特性的低频段表征了闭环系统的();开环频率特性的中频段表征了闭环系统的();开环频率特性的高频段表征了闭环系统的()。

考题 系统的开环频率特性通常是若干典型环节频率特性的乘积。

考题 0型系统的开环频率特性曲线在复平面上始于实轴上某点,终于()。

考题 填空题0型系统的开环频率特性曲线在复平面上始于实轴上某点,终于()。

考题 填空题串联环节的对数频率特性为各串联环节的对数频率特性的()。

考题 问答题绘制承潮潮位景积曲线的步骤是什么?