网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
8、设f1(x)和f2(x)是任意两个连续型随机变量,它们的概率密度分别为F1(x),分布函数为F2(x),则下面说法正确的是()
A.f1(x)+f2(x)必为某一随机变量的概率密度
B.f1(x)f2(x)必为某一随机变量的概率密度
C.F1(x)F2(x)必为某一随机变量的分布函数
D.F1(x)+F2(x)必为某一随机变量的分布函数
参考答案和解析
B
更多 “8、设f1(x)和f2(x)是任意两个连续型随机变量,它们的概率密度分别为F1(x),分布函数为F2(x),则下面说法正确的是()A.f1(x)+f2(x)必为某一随机变量的概率密度B.f1(x)f2(x)必为某一随机变量的概率密度C.F1(x)F2(x)必为某一随机变量的分布函数D.F1(x)+F2(x)必为某一随机变量的分布函数” 相关考题
考题
设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3:f1:R→R,f(x)=2xf2:N→N×N,f(n)=f
设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3: f1:R→R,f(x)=2x f2:N→N×N,f(n)=<n,n+1> f3:N→N,f(x)=x mod 3,x除以3的余数 则下面说法正确的是( )。A.f1和f2是单射但不是满射函数B.f1和f3都是满射函数C.f2是双射函数D.以上说法全都是错误的
考题
设R,N分别表示实数、整数和自然数集,下面定义函数f1,f2,f3: fl:R→R,f(x)=2x f2:N→N×N,f(n)=<n,n+1> f3:N→N,f(x)=x mod 3,x除以3的余数 则下面说法正确的是A.n和f2是单射但不是满射函数B.f1和f3都是满射函数C.f2是双射函数D.以上说法全都是错误的
考题
有以下程序 int fa(int x) {return x*x;} int fb(int x) {return x*x*x;} int f(int(*f1)(),int(*f2)(),int x) { return f2(x)-f1(x);} main() {int i; i=f(fa,fb,2);pfintf(“%d\n”,i); } 程序运行后的输出结果是A.-4B.1C.4D.8
考题
在下面的程序中,若调用f1(x)时参数传递采用引用方式,调用f2(y)时参数传递采用传值方式,则输出结果为(47);若调用f1(x)和f2(y)时参数传递都采用引用方式,则输出结果为(48)。A.3B.6C.8D.10
考题
设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().
A.F(z)=F(-x)
B.F(x)=F(-x)
C.F(X)=F(-x)
D.f(x)=f(-x)
考题
设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足 A.A2a+3b=4
B.3a+2b=4
C.a+b=1
D.a+b=2
考题
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
A.Af1(x)f2(x)
B.2f2(x)F1(x)
C.f1(x)F2(x)
D.f1(x)F2(x)+f2(x)f1(x)
考题
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A、a=3/5,b=-2/5B、a=2/3,b=2/3C、a=-1/2,b=3/2D、a=1/2,b=-2/3
考题
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)
考题
设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数
考题
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]
考题
设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A、f1(x)·f′2(x)-f2(x)f′1(x)=0B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0C、f1(x)f′2(x)+f2(x)·f′1(x)=0D、f1(x)f′2(x)+f2(x)f′1(x)≠0
考题
设F1(x)与F1(x)分别为随机变量X1与X2的分布函数,若函数F(x)=aF1(x)-bF2(x)是某随机变量的分布函数,则必有()A、a=3/5,b=-2/5B、a=-3/5,b=2/5C、a=1/2,b=3/2D、a=1/2,b=-3/2
考题
单选题有以下程序:#include main(){ int x[]={8,2,6,12,5,15},f1,f2; int *p=x; f1=f2=x[0]; for(;p { if(f1 if(f2*p)f2=*p; } printf("%d,%d",f1,f2);}程序的运行结果是( )。A
15,2B
15,15C
2,15D
8,8
考题
单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?()A
f1(x)f′2(x)-f2(x)f′1(x)=0B
f1(x)f′2(x)-f2(x)f′1(x)≠0C
f1(x)f′2(x)+f2(x)f′1(x)=0D
f1(x)f′2(x)+f2(x)f′1(x)≠0
考题
单选题设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为( )。A
f1(x)f2′(x)-f2(x)f1′(x)=0B
f1(x)f2′(x)+f1′(x)f2(x)=0C
f1(x)f2′(x)-f1′(x)f2(x)≠0D
f1′(x)f2(x)+f2(x)f1(x)≠0
考题
单选题设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A
a=3/5,b=-2/5B
a=2/3,b=2/3C
a=-1/2,b=3/2D
a=1/2,b=-2/3
考题
单选题设F1(x),F2(x)分别是随机变量X1,X2的分布函数,为使F(x)=aF1(x)-bF2(x)是随机变量X的分布函数,则在下列给定的各组数中应取( )。A
a=3/5,b=-2/5B
a=2/3,b=2/3C
a=-1/2,b=3/2D
a=1/2,b=-3/2
考题
单选题设y1(x)是方程y′+P(x)y=f1(x)的一个解,y2(x)是方程y′+P(x)y=f2(x)的一个解,则y=y1(x)+y2(x)是方程( )的解。A
y′+P(x)y=f1(x)+f2(x)B
y+P(x)y′=f1(x)-f2(x)C
y+P(x)y′=f1(x)+f2(x)D
y′+P(x)y=f1(x)-f2(x)
考题
问答题10.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=aF1(x)一bF2(x)也是某一随机变量的分布函数,证明a—b=1.
热门标签
最新试卷