网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
A.Af1(x)f2(x)
B.2f2(x)F1(x)
C.f1(x)F2(x)
D.f1(x)F2(x)+f2(x)f1(x)
B.2f2(x)F1(x)
C.f1(x)F2(x)
D.f1(x)F2(x)+f2(x)f1(x)
参考答案
参考解析
解析:
更多 “设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是 A.Af1(x)f2(x) B.2f2(x)F1(x) C.f1(x)F2(x) D.f1(x)F2(x)+f2(x)f1(x) ” 相关考题
考题
设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3:f1:R→R,f(x)=2xf2:N→N×N,f(n)=f
设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3: f1:R→R,f(x)=2x f2:N→N×N,f(n)=<n,n+1> f3:N→N,f(x)=x mod 3,x除以3的余数 则下面说法正确的是( )。A.f1和f2是单射但不是满射函数B.f1和f3都是满射函数C.f2是双射函数D.以上说法全都是错误的
考题
已知函数fl()、f2()的定义如下图所示设调用函数f1时传递给形参x的值是1,若函数调用f2(a)采用引用调用(call by refere nce)的方式传递信息,则函数n的返回值为 (32) ;若函数调用f2(a)以值调用(call liy value)的方式传递信息,则函数F1返回值为(33)。A.-5B.6C.15D.35
考题
已知函数f132、f232的定义如下图所示。设调用函数f1时传递给形参x的值是1,若函数调用f2(a)采用引用调用(call by reference)的方式传递信息,则函数f1的返回值为(请作答此空);若函数调用f2(a)以值调用(call by value)的方式传递信息,则函数f1的返回值为( )。
A.-5
B.6
C.15
D.35
考题
设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足 A.A2a+3b=4
B.3a+2b=4
C.a+b=1
D.a+b=2
考题
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A、a=3/5,b=-2/5B、a=2/3,b=2/3C、a=-1/2,b=3/2D、a=1/2,b=-2/3
考题
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)
考题
设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数
考题
设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A、f1(x)·f′2(x)-f2(x)f′1(x)=0B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0C、f1(x)f′2(x)+f2(x)·f′1(x)=0D、f1(x)f′2(x)+f2(x)f′1(x)≠0
考题
单选题有以下程序:#include main(){ int x[]={8,2,6,12,5,15},f1,f2; int *p=x; f1=f2=x[0]; for(;p { if(f1 if(f2*p)f2=*p; } printf("%d,%d",f1,f2);}程序的运行结果是( )。A
15,2B
15,15C
2,15D
8,8
考题
单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?()A
f1(x)f′2(x)-f2(x)f′1(x)=0B
f1(x)f′2(x)-f2(x)f′1(x)≠0C
f1(x)f′2(x)+f2(x)f′1(x)=0D
f1(x)f′2(x)+f2(x)f′1(x)≠0
考题
单选题设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为( )。A
f1(x)f2′(x)-f2(x)f1′(x)=0B
f1(x)f2′(x)+f1′(x)f2(x)=0C
f1(x)f2′(x)-f1′(x)f2(x)≠0D
f1′(x)f2(x)+f2(x)f1(x)≠0
考题
单选题设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A
a=3/5,b=-2/5B
a=2/3,b=2/3C
a=-1/2,b=3/2D
a=1/2,b=-2/3
考题
单选题设y1(x)是方程y′+P(x)y=f1(x)的一个解,y2(x)是方程y′+P(x)y=f2(x)的一个解,则y=y1(x)+y2(x)是方程( )的解。A
y′+P(x)y=f1(x)+f2(x)B
y+P(x)y′=f1(x)-f2(x)C
y+P(x)y′=f1(x)+f2(x)D
y′+P(x)y=f1(x)-f2(x)
考题
单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则( )。A
P{X≤0}=P{X≥0}=0.5B
f(-x)=1-f(x)C
F(x)=-F(-x)D
P{X≥2}=P{X<2}=0.5
热门标签
最新试卷