网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是



A.Af1(x)f2(x)
B.2f2(x)F1(x)
C.f1(x)F2(x)
D.f1(x)F2(x)+f2(x)f1(x)

参考答案

参考解析
解析:
更多 “设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是 A.Af1(x)f2(x) B.2f2(x)F1(x) C.f1(x)F2(x) D.f1(x)F2(x)+f2(x)f1(x) ” 相关考题
考题 设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3:f1:R→R,f(x)=2xf2:N→N×N,f(n)=f 设R、N分别表示实数、整数和自然数集,下面定义函数f1、f2、f3: f1:R→R,f(x)=2x f2:N→N×N,f(n)=<n,n+1> f3:N→N,f(x)=x mod 3,x除以3的余数 则下面说法正确的是( )。A.f1和f2是单射但不是满射函数B.f1和f3都是满射函数C.f2是双射函数D.以上说法全都是错误的

考题 设X的概率密度与分布函数分别为f(x)和F(X),则下列选项正确是 ( ) A.P{X=x}=f(x)B.P{X=x}=F(x)C.P{X=x}D.0

考题 已知(X,Y)服从均匀分布,联合概率密度函数为设Z=max{X,Y}求Z的概率密度函数fz(z)

考题 已知函数fl()、f2()的定义如下图所示设调用函数f1时传递给形参x的值是1,若函数调用f2(a)采用引用调用(call by refere nce)的方式传递信息,则函数n的返回值为 (32) ;若函数调用f2(a)以值调用(call liy value)的方式传递信息,则函数F1返回值为(33)。A.-5B.6C.15D.35

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:

考题 设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().

考题 设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。

考题 已知函数f132、f232的定义如下图所示。设调用函数f1时传递给形参x的值是1,若函数调用f2(a)采用引用调用(call by reference)的方式传递信息,则函数f1的返回值为(请作答此空);若函数调用f2(a)以值调用(call by value)的方式传递信息,则函数f1的返回值为( )。 A.-5 B.6 C.15 D.35

考题 设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.

考题 设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

考题 设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足 A.A2a+3b=4 B.3a+2b=4 C.a+b=1 D.a+b=2

考题 设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.

考题 设随机变量X的分布函数为求随机变量X的概率密度和概率

考题 已知 X1 和 X2 是相互独立的随机变量,分布函数分别为F1(x)和F2(x),则下列选项一定是某一随机变量分布函数的为( )

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A、a=3/5,b=-2/5B、a=2/3,b=2/3C、a=-1/2,b=3/2D、a=1/2,b=-2/3

考题 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)

考题 设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数

考题 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+g=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件()?A、f1(x)·f′2(x)-f2(x)f′1(x)=0B、f1(x)·f′2(x)-f2(x)·f′1(x)≠0C、f1(x)f′2(x)+f2(x)·f′1(x)=0D、f1(x)f′2(x)+f2(x)f′1(x)≠0

考题 设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。

考题 单选题有以下程序:#include main(){ int x[]={8,2,6,12,5,15},f1,f2; int *p=x; f1=f2=x[0]; for(;p {  if(f1  if(f2*p)f2=*p; } printf("%d,%d",f1,f2);}程序的运行结果是(  )。A 15,2B 15,15C 2,15D 8,8

考题 问答题39.设X的概率密度为 求:(1)X的分布函数F(x); (2)P{X一0.5}.

考题 单选题设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?()A f1(x)f′2(x)-f2(x)f′1(x)=0B f1(x)f′2(x)-f2(x)f′1(x)≠0C f1(x)f′2(x)+f2(x)f′1(x)=0D f1(x)f′2(x)+f2(x)f′1(x)≠0

考题 单选题设f1(x),f2(x)是二阶线性齐次方程y″+p(x)y′+q(x)y=0的两个特解,则c1f1(x)+c2f2(x)(c1,c2是任意常数)是该方程的通解的充要条件为(  )。A f1(x)f2′(x)-f2(x)f1′(x)=0B f1(x)f2′(x)+f1′(x)f2(x)=0C f1(x)f2′(x)-f1′(x)f2(x)≠0D f1′(x)f2(x)+f2(x)f1(x)≠0

考题 单选题设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A a=3/5,b=-2/5B a=2/3,b=2/3C a=-1/2,b=3/2D a=1/2,b=-2/3

考题 单选题设y1(x)是方程y′+P(x)y=f1(x)的一个解,y2(x)是方程y′+P(x)y=f2(x)的一个解,则y=y1(x)+y2(x)是方程(  )的解。A y′+P(x)y=f1(x)+f2(x)B y+P(x)y′=f1(x)-f2(x)C y+P(x)y′=f1(x)+f2(x)D y′+P(x)y=f1(x)-f2(x)

考题 问答题10.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=aF1(x)一bF2(x)也是某一随机变量的分布函数,证明a—b=1.

考题 单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则(  )。A P{X≤0}=P{X≥0}=0.5B f(-x)=1-f(x)C F(x)=-F(-x)D P{X≥2}=P{X<2}=0.5