网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

一、请写出三维非齐次波动方程的Cauchy问题,并写出其形式解。 提示:方程为u_{tt}-a^2laplace u=f(x,t), x=(x_1,x_2,x_3),u=u(x,t)。 二、请写出二维非齐次波动方程的Cauchy问题,并写出其形式解。 提示:方程为u_{tt}-a^2laplace u=f(x,t), x=(x_1,x_2),u=u(x,t)。


参考答案和解析
D
更多 “一、请写出三维非齐次波动方程的Cauchy问题,并写出其形式解。 提示:方程为u_{tt}-a^2laplace u=f(x,t), x=(x_1,x_2,x_3),u=u(x,t)。 二、请写出二维非齐次波动方程的Cauchy问题,并写出其形式解。 提示:方程为u_{tt}-a^2laplace u=f(x,t), x=(x_1,x_2),u=u(x,t)。” 相关考题
考题 一平面简谐波沿x轴正向传播,已知P点(xp=L)的振动方程为y=Acos(ωt+φ0),则波动方程为( )。A. B. C.y=Acos[t-(x/u)] D.

考题 一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u) B.y=Acosω(t-L/u) C.y=Acos(ωt+L/u) D.y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt, 波速为u=4m/s,则波动方程为: A. y=Acos[t-(x-5)/4] B. y=Acos[t+(x+5)/4] C. y=Acos[t-(x+5)/4] D. y=Acos[t+(x-5)/4]

考题 一简谐波沿x轴正向传播,波的振幅为A,角频率为ω,波速为u。若以原点处的质元经平衡位置正方向运动时作为计时的起点,则该波的波动方程是( )。A.y=Acos[ω(t-x/u)+π/2] B.y=Acos[ω(t-x/u)-π/2] C.y=Acos[ω(t-x/u)+π] D.y=Acos[ω(t-x/u)-π/3]

考题 一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为: A. y=Acos[w(t+l/u)+Φ0] B.y=Acos[w(t-l/u)+Φ0] C. y=Acos[wt+l/u+Φ0] D. y=Acos[wt-l/u+Φ0]

考题 一平面简谐波沿x轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acoswt,波速为u,那么x=0处质点的振动方程为(  )。A.y=Acosw(t+L/u) B.y=Acosw(t-L/u) C.y=Acos(wt+L/u) D.y=Acos(wt+L/u)

考题 (Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);   (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.

考题 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.   (Ⅰ)若f(x)=x,求方程的通解.   (Ⅱ)若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.

考题 如图9-3所示,非周期信号的时域描述形式为()。 A. u(t)=[10x1(t-3)-10X1(t-6)]V B.u(t)=[3x1(t-3)-10X1(t-6)]V C.u(t)=[3x1(t-3)-6X1(t-6)]V D.u(t)=[10x1(t-3)-6X1(t-6)]V

考题 一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A、y=Acos(wt+L/u)B、y=Acos(wt-L/u)C、y=Acosw(t+L/u)D、y=Acosow(t-L/u)

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acos(∞t+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[ω(t+L/u)+φ0]B、y=Acos[ω(t-L/u)+φ0]C、y=Acos[ωt+L/u+φ0]D、y=Acos[ωt-L/u+φ0]

考题 一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]

考题 若一阶方程y'=f(x,y)中,f(x,y)=u(x)v(y),则它是()。A、线性方程B、齐次方程C、变量可分离方程D、恰当方程

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]

考题 单选题一平面简谐波沿X轴正向传播,已知x=L(Lt,波速为u,那么x=0处质点的振动方程为()。A y=Acosω(t+L/u)B y=Acosω(t-L/u)C y=Acos(ωt+L/u)D y=Acos(ωt-L/u)

考题 单选题一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。A y=Acos(wt+L/u)B y=Acos(wt-L/u)C y=Acosw(t+L/u)D y=Acosow(t-L/u)

考题 单选题一平面简谐波沿X轴正向传播,已知x=L(L0),波速为u,那么x=0处质点的振动方程为:()A y=Acos[ω(t+L/u)+φ0]B y=Acos[ω(t-L/u)+φ0]C y=Acos[ωt+L/u+φ0]D y=Acos[ωt-L/u+φ0]

考题 单选题一平面简谐波沿X轴正向传播,已知x=1(10),波速为u,那么x=0处质点的振动方程为:()A y=Acos[w(t+1/u)+φ0]B y=ACOS[w(t-1/u)+φ0]C y=Acos[wt+1/u+φ0]D y=Acos[wt-1/u+φ0]

考题 单选题一平面简谐波沿X轴正向传播,已知x=1(1λ)处质点的振动方程为y=Acoswt+φ0),波速为u,那么x=0处质点的振动方程为:()A y=Acos[w(t+1/u)+φ0]B y=ACOS[w(t-1/u)+φ0]C y=Acos[wt+1/u+φ0]D y=Acos[wt-1/u+φ0]

考题 单选题利用变量替换u=x,v=y/x一定可以把方程x∂z/∂x+y∂z/∂y=z化为新方程(  )。A u∂z/∂u=zB ∂z/∂v=zC u∂z/∂v=zD v∂z/∂u=z

考题 单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A y=Acosω[t-(x-L)/u]B y=Acosω[t-(x+L)/u]C y=Acosω[t+(x+L)/u]D y=Acosω[t+(x-L)/u]

考题 单选题若一阶方程y'=f(x,y)中,f(x,y)=u(x)v(y),则它是()。A 线性方程B 齐次方程C 变量可分离方程D 恰当方程