网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

刚体绕定轴作匀变速转动时,刚体上距轴为r的任一点的

A.切向、法向加速度的大小均随时间变化

B.切向、法向加速度的大小均保持恒定

C.切向加速度的大小恒定,法向加速度的大小变化

D.法向加速度的大小恒定,切向加速度的大小变化


参考答案和解析
切向加速度的大小恒定,法向加速度的大小变化
更多 “刚体绕定轴作匀变速转动时,刚体上距轴为r的任一点的A.切向、法向加速度的大小均随时间变化B.切向、法向加速度的大小均保持恒定C.切向加速度的大小恒定,法向加速度的大小变化D.法向加速度的大小恒定,切向加速度的大小变化” 相关考题
考题 刚体作定轴转动时,附加动约束力为零的必要与充分条件是()。 A、刚体质心位于转动轴上B、刚体有质量对称面,转动轴与对称面垂直C、转动轴是中心惯性主轴D、无法判断

考题 作一般平面运动的刚体,在每一瞬时,刚体作的是定轴运动,所以,从整个过程看,刚体是作轴运动的。() 此题为判断题(对,错)。

考题 力使其作用的刚体绕轴或点转动的效应,可以用力对该轴或点的力矩来表示。() 此题为判断题(对,错)。

考题 刚体绕同平面内任意二根轴转动的合成运动( )。 A.一定是平面运动B.一定是平动C.一定是定轴转动D.是绕瞬轴的转动

考题 刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。() 此题为判断题(对,错)。

考题 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。() 此题为判断题(对,错)。

考题 刚体绕定轴转动时,刚体上各点的运动轨迹一定是圆周吗?

考题 满足下述哪个条件的刚体运动一定是定轴转动()A、刚体上所有点都在垂直于某定轴的平面上运动,而且所有点的轨迹都是圆。B、刚体运动时,其上所有点到某定轴的距离保持不变。C、刚体运动时,其上两点固定不动。

考题 作平面运动的刚体,若所受外力之主失为零,则刚体只能绕质心的转动。

考题 在刚体绕定轴转动问题中()。 (1)若已知外力对转轴的矩及刚体对定轴的转动惯量,能否完全确定刚体的运动? (2)若已知刚体绕定轴转动的转动方程及刚体对定轴的转动惯量,能否完全确定作用在刚体上的外力对定同之矩?A、(1)能B、(1)不能C、(2)不能D、(1)(2)均不确定

考题 刚体绕定轴转动时,刚体上所有点的轨迹一定是圆

考题 刚体对任一轴的转动惯量等于刚体对过质心且与该轴平行的轴的转动惯量()刚体质量与两轴之间距离平方的乘积,称为转动惯量的平行轴定理。A、乘以B、除以C、减去D、加上

考题 刚体绕同平面内任意二根轴转动的合成运动()。A、一定是平面运动B、一定是平动C、一定是定轴转动D、是绕瞬轴的转动

考题 刚体绕定轴的转动微分方程是什么?它与质点的运动微分方程有什么异同?

考题 刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。

考题 若平面运动刚体所受外力系的主矢为零,则刚体只可能作绕质心轴的转动。

考题 刚体绕定轴匀速转动时,其动量将发生变化;但如果刚体的质心恰好在转动轴上,则其动量不变化。

考题 刚体定轴转动时,刚体上各点都在绕转轴作不同半径的圆周运动

考题 刚体作定轴转动时,轴上产生附加压力的原因是什么?并定性分析附加压力为零的条件.

考题 刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等。

考题 一定轴转动刚体,其运动方程为φ=a-1/2bt2,其中a、b均为常数,则该刚体作()。A、匀加速转动B、匀减速转动C、匀速转动D、变减速转动

考题 定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。

考题 刚体绕定轴作匀速转动时,角速度是100rad/s,则角加速度是()A、50rad/sB、0C、100rad/sD、无法确定

考题 刚体作定轴转动时,附加反力为零的充要条件是:()A、刚体的质心位于转动轴上;B、刚体有质量对称平面,且转动轴与对称平面垂直;C、转动轴是中心惯性主轴;D、刚体有质量对称轴,转动轴过质心且与对称轴垂直。

考题 判断题定轴转动刚体上的各点都在绕轴上的一点作圆周运动,具有相同的角速度。A 对B 错

考题 单选题一定轴转动刚体,其运动方程为φ=a-1/2bt2,其中a、b均为常数,则该刚体作()。A 匀加速转动B 匀减速转动C 匀速转动D 变减速转动

考题 单选题满足下述哪个条件的刚体运动一定是定轴转动()。A 刚体上所有点都在垂直于某定轴的平面上运动,而且所有点的轨迹都是圆B 刚体运动时,其上所有点到某定轴的距离保持不变C 刚体运动时,其上或其扩展部分有两点固定不动D 刚体运动时,其上有一点固定不动

考题 单选题一定轴转动刚体,其运动方程为φ=a-bt2/2,其中a、b均为常数,则知该刚体作(  )。A 匀加速转动B 匀减速转动C 匀速转动D 减速转动