网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
如果线性规划问题有可行解,那么该解必须满足()
A

所有约束条件

B

变量取值非负

C

所有等式要求

D

所有不等式要求


参考答案

参考解析
解析: 暂无解析
更多 “单选题如果线性规划问题有可行解,那么该解必须满足()A 所有约束条件B 变量取值非负C 所有等式要求D 所有不等式要求” 相关考题
考题 ● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 解是线性规划的基本解但不满足约束条件,则该问题一定不会()。A、无解B、无可行基解C、存在至少一个解D、无最优可行基解

考题 满足线性规划问题全部约束条件的解不是()。A、可行解B、帕雷特解C、容许解D、可能解

考题 线性规划问题的可行解是满足约束条件的解。()

考题 下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在 B.如果可行解区存在,则一定有界 C.如果可行解区存在但无界,则一定不存在最优解 D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确

考题 线性规划问题的可行解是指满足所有()的解

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 满足线性规划问题所有约束条件的解称为()。A、可行解B、基本可行解C、无界解D、最优解

考题 在二元线性规划问题中,如果问题有可行解,则一定有最优解

考题 下列关于可行解,基本解,基可行解的说法错误的是()A、可行解中包含基可行解B、可行解与基本解之间无交集C、线性规划问题有可行解必有基可行解D、满足非负约束条件的基本解为基可行解

考题 满足线性规划问题全部约束条件的解称为()A、最优解B、基本解C、可行解D、多重解

考题 如果线性规划问题有可行解,那么该解必须满足()A、所有约束条件B、变量取值非负C、所有等式要求D、所有不等式要求

考题 如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()

考题 线性规划问题的可行解是指满足()的解。

考题 在图解法中,某个线性规划问题如果存在最优解,则这个最优解将处在可行解区域的有()

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题满足线性规划问题全部约束条件的解称为()A 最优解B 基本解C 可行解D 多重解

考题 填空题在图解法中,某个线性规划问题如果存在最优解,则这个最优解将处在可行解区域的有()

考题 填空题线性规划问题的可行解是指满足()的解。

考题 单选题线性规划问题中只满足约束条件的解称为()。A 基本解B 最优解C 可行解D 基本可行解

考题 单选题下列关于可行解,基本解,基可行解的说法错误的是()A 可行解中包含基可行解B 可行解与基本解之间无交集C 线性规划问题有可行解必有基可行解D 满足非负约束条件的基本解为基可行解

考题 判断题在二元线性规划问题中,如果问题有可行解,则一定有最优解A 对B 错

考题 填空题线性规划问题的可行解是指满足所有()的解