网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
总体率(1-α)可信区间指按一定方法()
A

求得的区间包含总体率的可能性为(1-α)

B

计算样本率抽样误差的大小

C

求得总体率的波动范围

D

估计样本率的大小

E

估计样本含量


参考答案

参考解析
解析: 暂无解析
更多 “单选题总体率(1-α)可信区间指按一定方法()A 求得的区间包含总体率的可能性为(1-α)B 计算样本率抽样误差的大小C 求得总体率的波动范围D 估计样本率的大小E 估计样本含量” 相关考题
考题 总体率(1一D.)可信区问指( )。A.求得的区间包含总体率的可能性为(1一OL)B.计算样本率抽样误差的大小C.求得总体率的波动范围D.估计样本率的大小E.估计样本含量

考题 当样本含量足够大,总体阳性率与阴性率均不接近于0和1,总体率95%可信区间的估计公式为A、B、C、D、E、

考题 总体率95%可信区间的意义是( )。

考题 下列说法正确的是A.表示正常值的参考值范围B.表示该区间包含总体均数的可能性为1-αC.样本量越大,可信区间的长度越大D.α越大,可信区间的可信度越高E.以上说法均不正确

考题 用样本率估计总体率的95%可信区间,当样本含量较大时,宜用( )。

考题 总体率(1-α)可信区间指A.求得的区间包含总体率的可能性为(1-α) B.计算样本率抽样误差的大小 C.求得总体率的波动范围 D.估计样本率的大小 E.估计样本含量

考题 当样本含量足够大,总体阳性率与阴性率均不接近于0和1,总体率95%可信区间的估计公式为A. B. C. D. E.

考题 有关可信区间与参考值范围的区别,下列描述正确的是A.可信区间与标准误有关,标准误越大,可信区间则越小 B.以上均正确 C.参考值范围与标准差有关,标准差越大,该范围越窄 D.参考值范围可以由计算出,而可信区间可以由计算出 E.参考值范围指的是:调查的一组资料中变量值分布范围,而可信_区间是指在可信度为1-α时,估计总体参数可能存在的范围

考题 总体率(1-α)可信区间指按一定方法A.求得的区间包含总体率的可能性为(1-α) B.估计样本含量 C.求得总体率的波动范围 D.计算样本率抽样误差的大小 E.估计样本率的大小

考题 下列关于总体均数可信区间的论述是正确的,除了()外。A总体均数的区间估计是一种常用的参数估计B总体均数可信区间所求的是在一定概率下的总体均数范围C求出总体均数可信区间后,即可推断总体均数肯定会在此范围内D95%是指此范围包含总体均数在内的可能性是95%,即估计错误的概率是5%

考题 总体率(1-α)可信区间指按一定方法()A、求得的区间包含总体率的可能性为(1-α)B、计算样本率抽样误差的大小C、求得总体率的波动范围D、估计样本率的大小E、估计样本含量

考题 总体率(1-α)可信区间指()A、求得的区间包含总体率的可能性为(1-α)B、计算样本率抽样误差的大小C、求得总体率的波动范围D、估计样本率的大小E、估计样本含量

考题 对总体均数的估计,99%可信区间一定比95%可信区间好。( )

考题 关于可信区间,下列说法不正确的是( )A、99%可信区间优于95%,可信区间B、可信区间的精密度反映应在区间的宽度C、当样本含量确定时,准确度和精密度是互相矛盾的D、可信区间的准确度反映在(1-α)上

考题 置信度1-α是指总体参数落在置信区间的概率是1-α。

考题 其他条件不变,可信度1-α越大,则总体均数可信区间()A、越宽B、越窄C、不变D、还与第二类错误有关

考题 其他条件不变,可信度1-α越大,则随机抽样所获得的总体均数可信区间将不包含总体均数的概率()。A、越大B、越小C、不变D、不确定

考题 下列关于总体均数可信区间的论述都是正确的,除了()A、总体均数的区间估计是一种常用的参数估计方法B、总体均数95%可信区间的公式是X±t0.05,νC、求出总体均数可信区间后,即可推断总体均数一定会在此范围内D、大样本时估计总体均数时t0.05,ν可近似用1.96代替E、总体均数99%可信区间的公式是X±t0.01,ν

考题 总体均数的可信区间中的可信度和区间的宽度各说明什么问题?

考题 在配对t检验中()A、差值的均数一定为0B、差值的方差一定为0C、差值的总体均数一定为0D、差值的总体均数可信区间一定包含0E、当不拒绝Ho时,差值的总体均数可信区间一定包含0

考题 单选题下列关于总体均数可信区间的论述是正确的,除了()外。A 总体均数的区间估计是一种常用的参数估计B 总体均数可信区间所求的是在一定概率下的总体均数范围C 求出总体均数可信区间后,即可推断总体均数肯定会在此范围内D 95%是指此范围包含总体均数在内的可能性是95%,即估计错误的概率是5%

考题 判断题对总体均数的估计,99%可信区间一定比95%可信区间好。( )A 对B 错

考题 单选题对公式p±uαsp的理解,下面错误的是(  )。A 此公式要求n足够大,p与q均不接近0或1,如np或np均大于5B sp是率的标准误,当α取1.96时,求得的范围是总体率的95%可信区间C 只有满足一定的应用条件,p的抽样分布逼近正态分布时,公式才能适用D 求出总体率的95%可信区间后,即可下结论说总体率一定会在此范围内E p表示样本阳性率,q=l-p为样本阴性率

考题 单选题下列关于总体均数可信区间的论述错误的是(  )。A 总体均数99%可信区间的公式是x±t(0.01,v)SB 总体均数95%可信区间的公式是x±t(0.05,v)SC 求出总体均数可信区间后,即可推断总体均数一定会在此范围内D 大样本时估计总体均数时t0.05,V可近似用1.96代替E 总体均数的区间估计是一种常用的参数估计方法

考题 单选题区间P±1.96Sp表示为(  )。A 大样本总体率90%的可信区间B 大样本总体率95%的可信区间C 小样本总体率95%的可信区间D 小样本总体率90%的可信区间E 大样本总体率99%的可信区间

考题 单选题总体率(1-α)可信区间指(  )。A 求得的区间包含总体率的可能性为(1-α)B 计算样本率抽样误差的大小C 求得总体率的波动范围D 估计样本率的大小E 估计样本含量

考题 单选题关于可信区间,下列说法不正确的是( )A 99%可信区间优于95%,可信区间B 可信区间的精密度反映应在区间的宽度C 当样本含量确定时,准确度和精密度是互相矛盾的D 可信区间的准确度反映在(1-α)上