网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设向量组的秩为r,则:()
A
该向量组所含向量的个数必大于r
B
该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关
C
该向量组中有r个向量线性无关,有r+1个向量线性相关
D
该向量组中有r个向量线性无关,任何r+1个向量必线性相关
参考答案
参考解析
解析:
暂无解析
更多 “单选题设向量组的秩为r,则:()A 该向量组所含向量的个数必大于rB 该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C 该向量组中有r个向量线性无关,有r+1个向量线性相关D 该向量组中有r个向量线性无关,任何r+1个向量必线性相关” 相关考题
考题
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
考题
设向量组I:α1,α2,αr可由向量组Ⅱ:β1,β2,βs,线性表示,则(53)。A.当r<s时,向量组Ⅱ必线性相关.B.当r<s时,向量组Ⅱ必线性相关.C.当r<s时,向量组Ⅰ必线性相关.D.当r<s时,向量组Ⅰ必线性相关.
考题
设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( )
A.若向量组Ⅰ线性无关,则r≤s
B.若向量组Ⅰ线性相关,则r大于s
C.若向量组Ⅱ线性无关,则r≤s
D.若向量组Ⅱ线性相关,则r小于s
考题
设A,B为满足AB=0的任意两个非零矩阵,则必有
A.A的列向量组线性相关,B的行向量组线性相关
B.A的列向量组线性相关,B的列向量组线性相关
C.A的行向量组线性相关,B的行向量组线性相关
D.A的行向量组线性相关,B的列向量组线性相关
考题
设向量组的秩为r,则:
A.该向量组所含向量的个数必大于r
B.该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关
C.该向量组中有r个向量线性无关,有r+1个向量线性相关
D.该向量组中有r个向量线性无关,任何r+1个向量必线性相关
考题
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S
B.若向量组I线性相关,则r>s
C.若向量组Ⅱ线性无关,则r≤s
D.若向量组Ⅱ线性相关,则r>s
考题
A是n阶方阵,其秩r<n,则在A的n个行向量中( ).A.必有r个行向量线性无关
B.任意r个行向量线性无关
C.任意r个行向量都构成极大线性无关向量组
D.任意一个行向量都可由其他任意r个行向量线性表出
考题
单选题设向量组α(→)1,α(→)2,…,α(→)r(Ⅰ)是向量组α(→)1,α(→)2,…,α(→)s(Ⅱ)的部分线性无关组,则( )。A
(Ⅰ)是(Ⅱ)的极大线性无关组B
r(Ⅰ)=r(Ⅱ)C
当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D
当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)
考题
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A
向量组(Ⅰ)与(Ⅱ)都线性相关B
向量组(Ⅰ)线性相关C
向量组(Ⅱ)线性相关D
向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
考题
单选题下列说法不正确的是( ).A
s个n维向量α1,α2,…,αs线性无关,则加入k个n维向量β1,β2,…,βk后的向量组仍然线性无关B
s个n维向量α1,α2,…,αs线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C
s个n维向量α1,α2,…,αs线性相关,则加入k个n维向量β1,β2,…,βk后得到的向量组仍然线性相关.D
s个n维向量α1,α2,…,αs线性无关,则减少一个向量后得到的向量组仍然线性无关.
考题
单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).A
r<s时,向量组(Ⅱ)必线性相关B
r>s时,向量组(Ⅱ)必线性相关C
r<s时,向量组(Ⅰ)必线性相关D
r>s时,向量组(Ⅰ)必线性相关
考题
单选题设A,B为满足AB=0(→)的任意两个非零矩阵,则必有( )。A
A的列向量组线性相关,B的行向量组线性相关B
A的列向量组线性相关,B的列向量组线性相关C
A的行向量组线性相关,B的行向量组线性相关D
A的行向量组线性相关,B的列向量组线性相关
考题
单选题A是n阶方阵,其秩r<n,则在A的n个行向量中( ).A
必有r个行向量线性无关B
任意r个行向量线性无关C
任意r个行向量都构成极大线性无关向量组D
任意一个行向量都可由其他任意r个行向量线性表出
考题
问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明: (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组; (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。
考题
单选题设向量组α(→)1,α(→)2,…,α(→)s的秩为r,则( )。A
必定r<sB
向量组中任意个数小于r的部分组线性无关C
向量组中任意r个向量线性无关D
若s>r,则向量组中任意r+l个向量必线性相关
热门标签
最新试卷