网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
若z=xy+sinxy则函数z(x,y)在(0,1)点关于x的偏导数的值是()。
A
0
B
2
C
1
D
-1/2
参考答案
参考解析
解析:
暂无解析
更多 “单选题若z=xy+sinxy则函数z(x,y)在(0,1)点关于x的偏导数的值是()。A 0B 2C 1D -1/2” 相关考题
考题
下面关系函数依赖的传述中,不正确的是______。A) 若XY——Z,则X——Z,Y——ZB) 若X——Y,Y——Z,则X——YZC) 若X——Y,Z包含Y,则X——ZD) 若X——Y,Y——Z,则X——Z
考题
下面关于函数依赖的叙述中,错误的是_________。A.若X→Y,Y→Z,则X→YZB.若XY→Z,则X→Y,Y→ZC.若X→Y,WY→Z,则XW→ZD.若X→Y 及Z包含于Y,则X→Z
考题
下列结论正确的是( ).A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)
C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)
D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
考题
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
考题
下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A
只能确定一个具有连续偏导数的隐函数z=z(x,y)B
可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C
可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D
可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
热门标签
最新试卷