网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
填空题
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。
参考答案
参考解析
解析:
e2x+y-cos(xy)=e-1方程两边对x求导,得e2x+y(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。
e2x+y-cos(xy)=e-1方程两边对x求导,得e2x+y(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。
更多 “填空题设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。” 相关考题
考题
设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。
考题
设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:
A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +c
C. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)
考题
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A
1/5B
1/7C
-1/7D
-1/5
考题
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A
1B
-1C
1/7D
-1/7
考题
单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是( ).A
曲线C的方程是f(x,y)=0B
以方程f(x,y)=0的解为坐标的点都在曲线C上C
方程f(x,y)=0的曲线是CD
方程f(x,y)=0表示的曲线不一定是C
考题
单选题设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为( )。A
y+1=x/2B
y-1=x/2C
y+1=xD
y-1=x
考题
单选题函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为( )。A
x-y=0B
x+y=0C
-x-y=0D
-x+y=0
热门标签
最新试卷