网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

可行基解


参考答案

更多 “可行基解” 相关考题
考题 解是线性规划的基本解但不满足约束条件,则该问题一定不会()。A、无解B、无可行基解C、存在至少一个解D、无最优可行基解

考题 基可行解对应的基,称为()。A、最优基B、可行基C、最优可行基D、极值基

考题 基本解对应的基是可行基当非负时为基本可行解,对应的基叫可行基( )

考题 对于线性规划问题存在基B,令非基变量为零,求得满足AX=b的解,称为B的()A、基本解B、可行解C、基本可行解D、最优解

考题 线性规划中,()不正确。A、有可行解必有可行基解B、有可行解必有最优解C、若存在最优解,则最优基解的个数不超过2D、可行域无界时也可能得到最优解

考题 关于线性规划模型的可行解和基解,叙述正确的是()A、可行解必是基解B、基解必是可行解C、可行解必然是非基变量均为0,基变量均非负D、非基变量均为0,得到的解都是基解

考题 线性规划问题中,下面的叙述不正确的有()。A、可行解一定存在B、可行基解必是最优解C、最优解一定存在D、最优解若存在,在可行基解中必有最优解

考题 下列关于可行解,基本解,基可行解的说法错误的是()A、可行解中包含基可行解B、可行解与基本解之间无交集C、线性规划问题有可行解必有基可行解D、满足非负约束条件的基本解为基可行解

考题 基本解对应的基X,当非负时为基本可行解,对应的基叫可行基。

考题 基本解对应的基是可行基()

考题 线性规划问题中基可行解与基解的区别在于()A、基解都不是可行解B、基可行解变量Xj≥0C、基解是凸集的边界D、基解变量Xj≤0

考题 在求minS的线性规划问题中,则()不正确。A、最优解只能在可行基解中才有B、最优解只能在基解中才有C、基变量的检验数只能为零D、有可行解必有最优解

考题 从一个基可行解到另一个基可行解的变换,就是进行一次()。

考题 线性规划的退化基可行解是指()A、基可行解中存在为零的非基变量B、基可行解中存在为零的基变量C、非基变量的检验数为零D、所有基变量不等于零

考题 线性规划问题有可行解,则()A、必有基可行解B、必有唯一最优解C、无基可行解D、无唯一最优解

考题 若线性规划问题存在可行基,则()A、一定有最优解B、一定有可行解C、可能无可行解D、可能具有无界解

考题 单选题线性规划问题中基可行解与基解的区别在于()A 基解都不是可行解B 基可行解变量Xj≥0C 基解是凸集的边界D 基解变量Xj≤0

考题 单选题线性规划中,()不正确。A 有可行解必有可行基解B 有可行解必有最优解C 若存在最优解,则最优基解的个数不超过2D 可行域无界时也可能得到最优解

考题 多选题线性规划问题中,下面的叙述不正确的有()。A可行解一定存在B可行基解必是最优解C最优解一定存在D最优解若存在,在可行基解中必有最优解

考题 填空题从一个基可行解到另一个基可行解的变换,就是进行一次()。

考题 单选题在求minS的线性规划问题中,则()不正确。A 最优解只能在可行基解中才有B 最优解只能在基解中才有C 基变量的检验数只能为零D 有可行解必有最优解

考题 判断题基本解对应的基X,当非负时为基本可行解,对应的基叫可行基。A 对B 错

考题 单选题关于线性规划模型的可行解和基解,叙述正确的是()A 可行解必是基解B 基解必是可行解C 可行解必然是非基变量均为0,基变量均非负D 非基变量均为0,得到的解都是基解

考题 单选题下列关于可行解,基本解,基可行解的说法错误的是()A 可行解中包含基可行解B 可行解与基本解之间无交集C 线性规划问题有可行解必有基可行解D 满足非负约束条件的基本解为基可行解

考题 单选题线性规划问题有可行解,则()A 必有基可行解B 必有唯一最优解C 无基可行解D 无唯一最优解

考题 单选题对于线性规划问题存在基B,令非基变量为零,求得满足AX=b的解,称为B的()A 基本解B 可行解C 基本可行解D 最优解

考题 单选题线性规划的退化基可行解是指()A 基可行解中存在为零的非基变量B 基可行解中存在为零的基变量C 非基变量的检验数为零D 所有基变量不等于零