2021年MBA考试《数学》模拟试题(2020-12-29)

发布时间:2020-12-29


2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理精选模拟习题10道,附答案解析,供您考前自测提升!


1、整数n是140的倍数。()(1)n是10的倍数(2)n是14的倍数【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:E

答案解析:分别取n=20和n=28,可知条件(1)和条件(2)单独都不充分;联合条件(1)和条件(2),则可知n是[10,14]=70的倍数,而不一定是140的倍数(例如取n=70),即条件(1)和条件(2)联合也不充分。

2、将7个人以3,2,2分为三组,则甲、乙两人都在3人组的概率为()。【问题求解】

A.

B.

C.

D.

E.

正确答案:E

答案解析:总分法为;甲、乙两人都在3人组的分法为,所求概率。

3、若|x-3|=3-x,则x的取值范围是()。【问题求解】

A.x>0

B.x=3

C.x<3

D.x≤3

E.x>3

正确答案:D

答案解析:由已知x-3≤0,从而x≤3。

4、有甲、乙、丙三项任务,现从10人中选4人承担这三项任务,不同的选派方法共有2520种。(1)甲项任务需2人承担,乙和丙项任务各需1人承担(2)乙项任务需2人承担,甲和丙项任务各需1人承担【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:D

答案解析:由条件(1),从10人中依次选出2,1,1人分配承担甲、乙、丙三项任务,从而不同的选派方法为。同理,由条件(2)也可得选派方法为2520种。

5、容器内装满铁质或木质的黑球与白球,其中30%是黑球,60%的白球是铁质的,则容器中木质白球的百分比是()。【问题求解】

A.28%

B.30%

C.40%

D.42%

E.70%

正确答案:A

答案解析:由题意,白球占70%,从而木质白球的百分比是0.7×0.4=0.28=28%。

6、数列是等差数列。()(1)(2)成等比数列【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:C

答案解析:条件(1)仅是为了保证题干中是有意义的,故此题答案只可能选C或E。联合条件(1)和条件(2),为常数(q为条件(2)中的公比),从而知为等差数列。

7、经过两条直线2x+3y+1 =0和x-3y+4 =0的交点,并且垂直于直线3x +4y -7 =0的直线方程为()。【问题求解】

A.4x+3y-7=0

B.4x-3y+9=0

C.5x-3y+7=0

D.5x+3y+9=0

E.5x+3y+7=0

正确答案:B

答案解析:由方程组,解得两直线交点为,3x+4y -7=0的斜率,从而所求直线斜率,用点斜式得,所求直线方程为4x-3y+9=0。

8、A,B两地相距15千米,甲中午12时从A地出发,步行前往B地,20分钟后乙从B地出发骑车前往A地,到达A地后乙停留了40分钟后骑车从原路返回,结果甲、乙同时到达B地,若乙骑车比甲出行每小时快10千米,则两人同时到达B地的时间是()。【问题求解】

A.下午2时

B.下午2时半

C.下午3时

D.下午3时半

正确答案:C

答案解析:设甲速度为x千米/小时,乙速度为(x+10)千米/小时。由题意,解得x=5,则到达B地的时间是下午3时。

9、对一个一元二次方程其中p,q为已知常数,且方程的两个整数根是可以求得的。()(1)甲看错了常数项,解得两根是-7和3(2)乙看错了一次项系数,解得两根是-3和4【条件充分性判断】

A.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

B.条件(1)充分,但条件(2)不充分

C.条件(2)充分,但条件(1)不充分

D.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

E.条件(1)充分,条件(2)也充分

正确答案:D

答案解析:由条件(1),知即p=-(-7+3)=4,由条件(2),知即q=-3×4=-12,从而条件(1)、(2)单独都不充分;但条件(1)、(2)联合起来方程为原方程的两根是-6,2。

10、将一颗骰子连续抛掷两次,点数分别为a,b,则使一元二次方程无实数解的抛掷法共有()种。【问题求解】

A.24

B.20

C.18

D.17

E.16

正确答案:D

答案解析:方程无实数根的充分必要条件为从而满足条件的(a,b)为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,5),(4,6),共17种。


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。