2020年MBA考试《数学》章节练习(2020-04-01)
发布时间:2020-04-01
2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、N=125。()
(1)有5本不同的书,从中选出3本送给3名同学,每人一本,共有Ⅳ种不同的选法
(2)书店有5种不同的书,买3本送给3名同学,每人一本,共有Ⅳ种不同的送法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1)
。由条件(2),每人必须送一本书且只能送一本书,但同一种书可以送给多个人,此类问题可归纳为分房问题,这里人是“人”,书是“房”,因此不同送法为。
2、将一颗骰子连续抛掷两次,点数分别为a,b,则使一元二次方程
无实数解的抛掷法共有()种。【问题求解】A.24
B.20
C.18
D.17
E.16
正确答案:D
答案解析:方程
无实数根的充分必要条件为从而满足条件的(a,b)为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,5),(4,6),共17种。3、有甲、乙、丙三项任务,现从10人中选4人承担这三项任务,不同的选派方法共有2520种。
(1)甲项任务需2人承担,乙和丙项任务各需1人承担
(2)乙项任务需2人承担,甲和丙项任务各需1人承担【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:由条件(1),从10人中依次选出2,1,1人分配承担甲、乙、丙三项任务,从而不同的选派方法为
。同理,由条件(2)也可得选派方法为2520种。
4、从4台甲型、5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各一台,则不同的取法共有()。【问题求解】
A.140种
B.84种
C.70种
D.35种
E.24种
正确答案:C
答案解析:从
全体取法中去掉只取甲型或乙型的情况,因此应有5、某单位有90人,其中有65人参加外语培训,72人参加计算机培训,已知参加外语培训而没参加计算机培训的有8人,则参加计算机培训而没参加外语培训的人数为()。【问题求解】
A.5
B.8
C.10
D.12
E.15
正确答案:E
答案解析:设A表示参加外语培训的人数,B表示参加计算机培训的人数,则如图所示,90人分为四类,从而AB=65-8=57(人),所求
。下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2021-01-02
- 2020-05-29
- 2020-09-25
- 2020-12-05
- 2020-05-24
- 2020-05-20
- 2020-01-11
- 2020-10-07
- 2021-06-03
- 2020-06-15
- 2020-12-21
- 2020-05-18
- 2020-07-12
- 2021-05-25
- 2020-01-20
- 2020-11-04
- 2021-07-22
- 2021-03-06
- 2021-09-02
- 2019-11-04
- 2021-05-16
- 2019-11-07
- 2021-06-10
- 2020-02-22
- 2020-07-01
- 2020-07-29
- 2021-01-14
- 2020-06-16
- 2020-09-13
- 2020-11-13