2020年MBA考试《数学》章节练习(2020-01-20)

发布时间:2020-01-20


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、n=3。()
(1)若


(2)若

【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),得(2n+1)(2n)(2n-1)(2n-2)=140n(n-1)(n-2),即


,因为

且n为整数,所以n=3,即条件(1)是充分的。
由条件(2)

,可得 n(n-1)(n-2)(n-3)=24n(n-1)(n-2),整理得:n(n-1)(n-2)(n-3-24)=0,即 n=0,n=1,n=2,n=27。由于n≥4,从而n=27,条件(2)不充分。

2、有4名男生,3名女生站成一排,男生不站排头和排尾的排法种数是()。【问题求解】

A.760

B.720

C.680

D.620

E.480

正确答案:B

答案解析:第一个步骤,选1名女生站排头,共有3种可能性;
第二个步骤,再选1名女生站排尾,则有2种可能性;
第三个步骤,诖剩下5人站位,则有5!=120(种)可能性;
从而总排法为3×2×120=720(种)。

3、10产品中有3件次品,现从中任意抽出4件检验,其中至少有2件次品的抽法种数是()。【问题求解】

A.120

B.116

C.98

D.86

E.70

正确答案:E

答案解析:2件次品2件正品的取法为


3件次品1件正品的取法为


从而总取法为63+7=70(种)。

4、从5名女生、4名男生中选出3人参加数学竞赛,则选出的3人中至少有一名女生的选法共有()种。【问题求解】

A.80

B.76

C.70

D.64

E.60

正确答案:A

答案解析:总选法为

从而至少有二名女生的选法为

5、N=1260。()
(1)有实验员9人,分成3组,分别为2,3,4人,去进行内容相同的实验,共有N种不同的分法
(2)有实验员9人,分成3组,分别为2,3,4人,去进行内容不同的实验,共有N种不同的分法【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1)

,即条件(1)是充分的。
由条件(2)

,即条件(2)不充分。


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。