2020年MBA考试《数学》章节练习(2020-01-20)
发布时间:2020-01-20
2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、n=3。()
(1)若
(2)若
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),得(2n+1)(2n)(2n-1)(2n-2)=140n(n-1)(n-2),即
即
由条件(2)
2、有4名男生,3名女生站成一排,男生不站排头和排尾的排法种数是()。【问题求解】
A.760
B.720
C.680
D.620
E.480
正确答案:B
答案解析:第一个步骤,选1名女生站排头,共有3种可能性;
第二个步骤,再选1名女生站排尾,则有2种可能性;
第三个步骤,诖剩下5人站位,则有5!=120(种)可能性;
从而总排法为3×2×120=720(种)。
3、10产品中有3件次品,现从中任意抽出4件检验,其中至少有2件次品的抽法种数是()。【问题求解】
A.120
B.116
C.98
D.86
E.70
正确答案:E
答案解析:2件次品2件正品的取法为
3件次品1件正品的取法为
从而总取法为63+7=70(种)。
4、从5名女生、4名男生中选出3人参加数学竞赛,则选出的3人中至少有一名女生的选法共有()种。【问题求解】
A.80
B.76
C.70
D.64
E.60
正确答案:A
答案解析:总选法为
5、N=1260。()
(1)有实验员9人,分成3组,分别为2,3,4人,去进行内容相同的实验,共有N种不同的分法
(2)有实验员9人,分成3组,分别为2,3,4人,去进行内容不同的实验,共有N种不同的分法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1)
由条件(2)
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2021-04-10
- 2020-02-09
- 2020-04-27
- 2019-10-24
- 2020-12-11
- 2019-11-07
- 2020-11-25
- 2020-01-08
- 2021-01-07
- 2019-12-07
- 2020-05-23
- 2021-03-15
- 2020-10-17
- 2021-01-21
- 2020-06-14
- 2021-08-09
- 2020-05-13
- 2020-11-12
- 2020-12-06
- 2019-11-19
- 2020-05-12
- 2020-05-28
- 2021-05-30
- 2020-03-09
- 2021-03-28
- 2020-03-20
- 2020-02-25
- 2020-09-30
- 2020-01-15
- 2020-01-09