2020年MBA考试《数学》章节练习(2020-03-13)

发布时间:2020-03-13


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、有4名男生,3名女生站成一排,男生不站排头和排尾的排法种数是()。【问题求解】

A.760

B.720

C.680

D.620

E.480

正确答案:B

答案解析:第一个步骤,选1名女生站排头,共有3种可能性;
第二个步骤,再选1名女生站排尾,则有2种可能性;
第三个步骤,诖剩下5人站位,则有5!=120(种)可能性;
从而总排法为3×2×120=720(种)。

2、编号为1,2,3,4,5的5人入座编号也为1,2,3,4,5的5个座位,至多有两人对号的坐法有()种。【问题求解】

A.103

B.105

C.107

D.106

E.109

正确答案:E

答案解析:问题的正面有3种情况:全不对号;有且仅有1人对号;有且仅有2人对号,且每种情况较难处理。
而反面只有2种情况:全对号(4人对号时一定全对号);有且仅有三人对号;而全对号只有一种方法;3人对号时,可用乘法原理,第一步先从5人中选出3人有 种选法,其余两人不对号只有一种方法.因此,问题的反面情况共有

5人全排列有

种,所以共有

3、从1分、2分、5分及1角的4枚硬币中,至少任取1枚,可以组成不同币值的种数是()。【问题求解】

A.10

B.12

C.13

D.14

E.15

正确答案:E

答案解析:用加法原理,正好取一枚的币值种数为4,正好取两枚的币值种数为

正好取三枚的币值种数为

正好取四枚的币值种数为


从而不同种的币值种数共有4+6+4+1=15(种).

4、从4台甲型、5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各一台,则不同的取法共有()。【问题求解】

A.140种

B.84种

C.70种

D.35种

E.24种

正确答案:C

答案解析:从

全体取法中去掉只取甲型或乙型的情况,因此应有

5、从5名女生、4名男生中选出3人参加数学竞赛,则选出的3人中至少有一名女生的选法共有()种。【问题求解】

A.80

B.76

C.70

D.64

E.60

正确答案:A

答案解析:总选法为

从而至少有二名女生的选法为


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。