2021年MBA考试《数学》章节练习(2021-11-12)

发布时间:2021-11-12


2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、将4本书分给甲、乙、丙3人,不同的分配方法的种数是。()(1)每人至少1本(2)甲只能分到1本【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),先从甲、乙、丙3人中选出1人准备分给2本书,再从4本书中选出2本分给此人,共有种分法,最后将剩余的2本书分给2人,有2种分法,由乘法原理,总分法为即条件(1)是充分的。由条件(2),可得分法为。

2、用红、黑、黄、蓝、绿五种颜色涂在图中4个区域里,每个区域涂一种颜色,且相邻区域的颜色不能相同,则A区域用红色的涂法共有()种.【问题求解】

A.48

B.42

C.40

D.36

E.24

正确答案:A

答案解析:分四个步骤完成,共有1×4×4×3=48(种).

3、5个男生、3个女生排成一列,要求女生不相邻且不可排两头,排法共有()。【问题求解】

A.2880种

B.2882种

C.2884种

D.2890种

E.2600种

正确答案:A

答案解析:如图所示,将8个座位编号第一个步骤为3个女生选3个座位,从左到右,共有(2,4,6),(2,4,7),(2,5,7),(3,5,7)四种选法;第二个步骤让女生就座,共有3!种坐法;第三个步骤让5个男生就座,有5!种坐法,因此共有4×3!×5!=2880(种)。

4、若将10只相同的球随机放入编号为1,2,3,4的四个盒子中,则每个盒子不空的投放方法有()。【问题求解】

A.72种

B.84种

C.96种

D.108种

E.120种

正确答案:B

答案解析:将10个球排成一排,从每相邻两球的9个间隙中选出3个位置放入分隔板,则可将10个相同球分为四部分,且每部分都不空,从而共有

5、从11名工人中选出4人排版,4人印刷,则共有185种不同的选法。()(1)11名工人中5人只会排版,4人只会印刷(2)11名工人中2人既会排版,又会印刷【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:C

答案解析:此题只能选 C.或 E..联合条件(1)和条件(2),可分三类情况:(1)从只会印刷的4人中任选2人,两样都会的人印刷,只会排版的5人中任选4人,即;(2)从只会印刷的4人中任选3人,两样都会的2人中选一人印刷,另外一个人与只会排版的5人合在一起任选4人去排版,即;(3)只会印刷的人都选即,从其他7人中任选4人排版,即;则共有


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。