研究生录取通知书的寄送地址如何确定呢?

发布时间:2020-03-23


关于研究生录取通知书的发放和寄送相关事宜,很多同学不是很清楚,就带着这些问题,跟着51题库考试学习网一起来看看吧,希望对大家有所帮助。

每个院校录取通知书的发放时间会不一样,一般研究生的录取通知书是在5-6月份发放,距离学校较近的考生可以选择自取,各院校规定的自取时间结束后才会邮寄剩余通知书。

一般情况下,各院校硕士研究生录取通知书预计于6月中下旬挂号寄出,大概2-10日左右将到达广大考生手中,邮寄地址为研究生考试网上报名时所填写的通信地址。 

如果地址有更改,可以查看院校公布的研究生录取通知书寄发通知,有填写修改地址的入口,或者打电话到研招办询问。

报考分类

1.非定向指在录取时不确定未来的工作单位,在校期间享受国家规定的奖学金和其他生活待遇。毕业时应服从国家就业指导,在国家规定的服务范围内进行安排或实行双向选择  。

2.定向培养研究生,是指在招生时即通过合同形式明确其毕业后工作单位的研究生,其学习期间的培养费用按规定标准由国家向培养单位提供 

全国硕士研究生统一招生考试报考常识

1. 考研高校选择

A.三本(本地区、本学校、本专业)最容易成功

B.三跨(跨地区、跨学校、跨专业)最难成功

C.一本二跨(本专业、跨地区、跨学校)最为理想

D.二本一跨(本地、本专业、跨学校)最能成功

E.二本一跨(本地、本学校、跨专业)最好成功

2. 院校及专业选择

1)该院校是985还是211

2)该专业在全国排名第几位

3)近五年该专业招生人数、报考人数、录取率

4)近三年该校本专业指定参考书变化情况

5)近四年该校本专业专业课真题有售与否

6)近六年该校本专业开办考前辅导班与否

7)近五年该校本专业硕士生研究生毕业就业情况

3. 考研科目

共四门:两门公共课、一门基础课(数学或专业基础)、一门专业课。

两门公共课:政治、英语。

一门基础课:数学或专业基础。

一门专业课(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。

其中:法硕、西医综合、教育学、历史学、心理学、计算机、农学等属统考专业课;其他非统考专业课都是各高校自主命题。

4.考研时间

每年倒数第二个周末。

5. 考研分数(总分500分)

政治:100

英语:100

数学或专业基础:150

专业课:150

其中:管理类联考分数是300分(包括英语二100分,管理类综合200分)。

教育部公布的数据,2018年研究生报考人数达到238万,较2017年增加了37万人,增幅达18.4%。这一增幅在2019年再度被刷新。统计数据显示,2019年全国考研人数规模达到290万人,比2018年再增52万人,增幅升至21%

好了,今日分享的内容到这里就结束了,小伙伴们都清楚了吗?如果还有任何疑问,欢迎关注51题库考试学习网!


下面小编为大家准备了 研究生入学 的相关考题,供大家学习参考。

One of the biggest--and most lucrative-applications of artificial intelligence(AI)is in health care.And the capacity of ai to diagnose or predict disease risk is developing rapidly.In recent weeks researchers have unveiled AI models that scan retinal images to predict eye-and cardiovascular-disease risk,and that analyse mammograms to detect breast cancer.Some ai tools have already found their way into clinical practiceaI diagnostics have the potential to improve the delivery and effectiveness of health care.Many are a triumph for science,representing years of improvements in computing power and the neural networks that underlie deep learning.In this form of Al,computers process hundreds of thousands of labelled disease images,until they can classify the images unaided.In reports,researchers conclude that an algorithm is successful if it can identify a particular condition from such images as effectively as can pathologists and radiologists.But that alone does not mean the ai diagnostic is ready for the clinic.Many reports are best viewed as analogous to studies showing that a drug kills a pathogen in a Petri dish.Such studies are exciting but scientific process demands that the methods and materials be described in detail,and that the study is replicated and the drug tested in a progression of studies culminating in large clinical trials.This does not seem to be happening enough in ai diagnostics.Many in the field complain that too many developers are not taking the studies far enough.They are not applying the evidence-based approaches that are established in mature fields,such as drug development These details matter.For instance,one investigation published last year found that an model detected breast cancer in whole slide images better than did 11 pathologists who were allowed assessment times of about one minute per image.However,a pathologist given unlimited time performed as well as al,and found difficult-to-detect cases more often than the computers Some issues might not appear until the tool is applied.For example,a diagnostic algorithm might incorrectly associate images produced using a particular device with a disease--but only because,during the training process,the clinic using that device saw more people with the disease than did another clinic uSing a different device These problems can be overcome.One way is for doctors who deploy aI diagnostic tools in the clinic to track results and report them so that retrospective studies expose any deficiencies.better yet such tools should be developed rigorously-trained on extensive data and validated in controlled studies that undergo peer review.This is slow and difficult,in part because privacy concerns can make it hard for researchers to access the massive amounts of medical data needed.A News story in Nature discusses one possible answer:researchers are building blockchain-based systems to encourage patients to securey share information.At present,human oversight will probably prevent weaknesses in ai diagnosis from being a matter of life or death.That is why regulatory bodies,such as the US Food and Drug Administration,allow doctors to pilot technologies classified as low risk But lack of rigour does carry immediate risks the hype-fail cycle could discourage others from investing in similar techniques that might be better.Sometimes,in a competitive field such as al,a well-publicized set of results can be enough to stop rivals from entering the same field Slow and careful research is a better approach.Backed by reliable data and robust methods,it may take longer,and will not churn out as many crowd-pleasing announcements.But it could prevent deaths and change lives

答案:
解析:
许多都是科学技术的胜利代表了多年来计算能力和莫定深度学习基础的神经网络技术的进步。这是一个复合句。该句主干为Many are a triumph for science。representing引导的部分为伴随状语。本句翻译时应注意增译,a triumph for science应翻译成“科学技术的胜利”。triumph为名词,这里指a great success,achievement or victory例如:one of the greatest triumphs of modem science现代科学技术的一个最大的成就。

黄柏的药用部位是

A.根
B.根茎
C.树皮
D.根皮
答案:C
解析:
黄柏来源于芸香科植物黄皮树或黄檗的干燥树皮。

女性,35岁。步行中后仰滑倒,右手掌撑地。现右肩痛,不敢活动。检查见右肩方肩畸形,Dugas征(+)。
该病人的诊断应考虑是


A.右肩软组织损伤
B.右肩关节前脱位
C,右肱骨外科颈骨折
D.右肩锁关节脱位
答案:B
解析:
[考点]肩关节前脱位
[分析]根据受伤机制及典型体征,应诊断为肩关节前脱位。对此病人首选的辅助检查是X线摄片检查,除明确诊断外,还可了解脱出肱骨头的位置,有无合并骨折等,为治疗方法提供参考。肩关节前脱位最常见的合并症是肱骨大结节撕脱骨折,常随肩关节复位而复位,无需特殊处理,但复位后固定时间应延长1~2周(无骨折为3周)。

经代谢转变产生乙酰CoA的是 ()

A.葡萄糖
B.脂肪酸
C.磷脂
D.胆固醇
答案:D
解析:
[考点]胆固醇代谢、脂肪酸氧化及磷 脂代谢
[分析]葡萄糖、脂肪酸及磷脂都能经氧化分解产生乙酰CoA,最后经三羧酸循环被彻底氧化成CO2及H2O。只有胆固醇因其分子中的环戊烷多氢菲母核在体内不能被降解,只能侧链被氧化、还原或降解成其他具有环戊烷多氢菲母核的生理活性化合物。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。