网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处( )
A
必取得极小值
B
必取得极大值
C
不可能取得极值
D
可能取极大值,也可能去极小值
参考答案
参考解析
解析:
根据极值的定义可知
∃δ1>0使x∈(x0-δ1,x0+δ1)时,f(x)>f(x0);
∃δ2>0使x∈(x0-δ2,x0+δ2)时,g(x)>g(x0);
取δ=min[δ1,δ2],则x∈(x0-δ,x0+δ)时,有f(x)+g(x)>f(x0)+g(x0),即F(x)=f(x)+g(x)在x=x0处取得极小值。
根据极值的定义可知
∃δ1>0使x∈(x0-δ1,x0+δ1)时,f(x)>f(x0);
∃δ2>0使x∈(x0-δ2,x0+δ2)时,g(x)>g(x0);
取δ=min[δ1,δ2],则x∈(x0-δ,x0+δ)时,有f(x)+g(x)>f(x0)+g(x0),即F(x)=f(x)+g(x)在x=x0处取得极小值。
更多 “单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处( )A 必取得极小值B 必取得极大值C 不可能取得极值D 可能取极大值,也可能去极小值” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?
A.必有极大值 B.必有极小值
C.可能取得极值 D.必无极值
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
设f(x),g(x)在x=x0处均不连续,则在x=x0处( )
A.f(x)+g(x)f(x)·g(X)均不连续
B.f(x)+g(x)不连续,f(x)·g(x)的连续性不确定
C.f(x)+g(x)的连续性不确定,f(x)·g(x)不连续
D.f(x)+g(x)f(x)·g(x)的连续性均不确定
考题
设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。
A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值
考题
g(x)在(-∞,+∞)严格单调减,又f(x)在x=x0处有极大值,则必有():A、g(f(x))在x=x0处有极大值B、g(f(x))在x=x0处有极小值C、g(f(x))在x=x0处有最小值D、g(f(x))在x=x0既无极大也无极小值
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题已知函数y=f(x)对一切x满足,若f’(x0)=0(x0≠0),则().A
f(x0)是f(x)的极大值B
f(x0)是f(x)的极小值C
(x0(x0))是曲线y=f(x)的拐点D
f(x0)不是f(x)的极值,(x0(x0))也不是曲线y=f(x)的拐点
考题
单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则( )A
x0不是f(x)g(x)的驻点B
x0是f(x)g(x)的驻点,但不是它的极值点C
x0是f(x)g(x)的驻点,且是它的极小值点D
x0是f(x)g(x)的驻点,且是它的极大值点
考题
单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处( )A
必取得极小值B
必取得极大值C
不可能取得极值D
可能取极大值,也可能去极小值
考题
单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处( )。A
取得极大值B
取得极小值C
在x0点某邻域内单调增加D
在x0点某邻域内单调减少
考题
单选题设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处( )。A
取得极大值B
某邻域内单调递增C
某邻域内单调递减D
取得极小值
考题
单选题y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)( )。A
在x0点取得极大值B
在x0的某邻域单调增加C
在x0点取得极小值D
在x0的某邻域单调减少
考题
单选题下列说法中正确的是( )。[2014年真题]A
若f′(x0)=0,则f(x0)必须是f(x)的极值B
若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
考题
单选题g(x)在(-∞,+∞)严格单调减,又f(x)在x=x0处有极大值,则必有():A
g(f(x))在x=x0处有极大值B
g(f(x))在x=x0处有极小值C
g(f(x))在x=x0处有最小值D
g(f(x))在x=x0既无极大也无极小值
考题
单选题设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A
g[f(x)]在x=x0处有极大值B
g[f(x)]在x=x0处有极小值C
g[f(x)]在x=x0处有最小值D
g[f(x)]在x=x0既无极值也无最小值
热门标签
最新试卷