网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()
A

y=Acos(2πt/T-2πx/λ-1/2π)

B

y=Acos(2πt/T+2πx/λ+1/2π)

C

y=Acos(2πt/T+2πx/λ-1/2π)

D

y=Acos(2πt/T-2πx/λ+1/2π)


参考答案

参考解析
解析: 写出波动方程,X=(1/2)λ,t=T/4,φ=π代入,求初相位φ0
更多 “单选题一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A y=Acos(2πt/T-2πx/λ-1/2π)B y=Acos(2πt/T+2πx/λ+1/2π)C y=Acos(2πt/T+2πx/λ-1/2π)D y=Acos(2πt/T-2πx/λ+1/2π)” 相关考题
考题 一平面简谐波沿x轴正向传播,已知P点(xp=L)的振动方程为y=Acos(ωt+φ0),则波动方程为( )。A. B. C.y=Acos[t-(x/u)] D.

考题 一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u) B.y=Acosω(t-L/u) C.y=Acos(ωt+L/u) D.y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt, 波速为u=4m/s,则波动方程为: A. y=Acos[t-(x-5)/4] B. y=Acos[t+(x+5)/4] C. y=Acos[t-(x+5)/4] D. y=Acos[t+(x-5)/4]

考题 一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为: A. y = Acos(2πt/T-2πx/λ-π/2) E. y = Acos(2πt/T+2πx/λ+π/2) C. y = Acos(2πt/T+2πx/λ-π/2) D. y = Acos(2πt/T-2πx/λ+π/2)

考题 —平面简谐波沿x轴正方向传播,振幅A=0. 02m,周期T=0. 5s,波长λ=100m,原点处质元的初相位φ=0,则波动方程的表达式为: A.y=0.02cos2π(t/2-0.01x) (SI) B.y=0.02cos2π(2t-0.01x) (SI) C.y=0.02cos2π(t/2-100x) (SI) D.y=0.02cos2π(2t-100x) (SI)

考题 一振幅为A,周期为T,波长λ的平面简谐波沿x轴负向传播,在x=λ/2处,t=T/4时,振动相位为π,则此平面简谐波的波动方程为( )。A. B. C. D.

考题 一平面简谐波表达式为y=-0.05sinπ(t-2x)(SI),则该波的频率v(Hz)、波速u(m/s)及波线上各点振动的振幅A(m)依次为:

考题 一平面余弦波波源的振动周期T=0.5s,所激起的波的波长λ=10m,振幅为0.5m,当t=0时,波源处振动的位移恰为正向最大值,取波源处为原点并设波沿x轴正向传播,此波的波动方程为( )。

考题 —平面简谐波沿x 轴正方向传播 ,振幅A=0.02m ,周期T=0.5s ,波长λ= 100m ,原点处质元的初相位Φ=0,则波动方程的表达式为:

考题 一平面简谐波沿x轴负方向传播,其振幅A=0.01m,频率v=550Hz,波速u=330m/s。若t=0时,坐标原点处的质点达到负的最大位移,则此波的波函数为( )。

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acos(∞t+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[ω(t+L/u)+φ0]B、y=Acos[ω(t-L/u)+φ0]C、y=Acos[ωt+L/u+φ0]D、y=Acos[ωt-L/u+φ0]

考题 一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A、y=Acos(2πt/T-2πx/λ-1/2π)B、y=Acos(2πt/T+2πx/λ+1/2π)C、y=Acos(2πt/T+2πx/λ-1/2π)D、y=Acos(2πt/T-2πx/λ+1/2π)

考题 一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]

考题 一平面简谐波沿着x轴正方向传播,已知其波函数为y=0.4cosπ(50t-0.10x)m,则该波的振幅为(),波速为()。

考题 波长为λ、向右传播的某简谐波,其波源的振动方程为x=2cosπt,则传播方向上与波源相距一个波长的质点振动方程为:()A、x=2cos(πt-π)B、x=2cos(πt-2π)C、x=2cosπtD、x=2cos(πt+2π)

考题 一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)

考题 一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]

考题 一平面简谐波沿x轴正向传播,已知波长λ,频率υ,角频率ω,周期T,初相Ф0,则下列表示波动方程的式子中,哪几个是正确的?Ⅰ.y=Acos(ωt-2πX/λ+Ф0)Ⅱ.y=Acos[2π(t/T-X/λ)+Ф0]Ⅲ.y=Acos[2π(γt-X/λ)+Ф0]()A、ⅠB、Ⅰ、ⅡC、Ⅱ、ⅢD、Ⅰ、Ⅱ、Ⅲ

考题 已知平面简谐波的波动方程y=0.3cos(2πt-πx)(m),则该波源的振动初相位为(),波的传播速度为()m.s-1,波长()m。

考题 已知平面简谐波的波动方程式为y=8cos2π(2t-x/100)(cm),则t=2.1s时,在X=0处相位为(),在x=0.1m处相位为()。

考题 单选题一平面简谐波沿X轴正向传播,已知x=L(Lt,波速为u,那么x=0处质点的振动方程为()。A y=Acosω(t+L/u)B y=Acosω(t-L/u)C y=Acos(ωt+L/u)D y=Acos(ωt-L/u)

考题 单选题一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A y=Acos(2πt/T-2πx/λ-1/2π)B y=Acos(2πt/T+2πx/λ+1/2π)C y=Acos(2πt/T+2πx/λ-1/2π)D y=Acos(2πt/T-2πx/λ+1/2π)

考题 单选题一平面简谐波沿x轴正向传播,振幅A=0.02m,周期T=0.5s,波长λ=100m,原点处质元初相位φ=0,则波动方程的表达式(  )。[2012年真题]A y=0.02cos2π(t/2-0.01x)(SI)B y=0.02cos2π(2t-0.01x)(SI)C y=0.02cos2π(t/2-100x)(SI)D y=0.002cos2π(2t-100x)(SI)

考题 单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A y=Acosω[t-(x-L)/u]B y=Acosω[t-(x+L)/u]C y=Acosω[t+(x+L)/u]D y=Acosω[t+(x-L)/u]

考题 单选题平面简谐波沿x轴正方向传播,其振幅为A,频率为v,设t=t 0时刻的波形如图所示,则x=0处质点的振动方程是()。A y=Acos[2πv(t+t 0)+π/2]B y=Acos[2πv(t-t 0)+π/2]C y=Acos[2πv(t-t 0)-π/2]D y=Acos[2πv(t-t 0)+π]