网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
若一平面简谐波表达式为y=Acos(Bt-cx)(SI),式中A、B、C为正值常数,则( )。
参考答案
参考解析
解析:依题意,波的表达式为
比较两式得到
比较两式得到
更多 “若一平面简谐波表达式为y=Acos(Bt-cx)(SI),式中A、B、C为正值常数,则( )。 ” 相关考题
考题
一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u)
B.y=Acosω(t-L/u)
C.y=Acos(ωt+L/u)
D.y=Acos(ωt-L/u)
考题
一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt, 波速为u=4m/s,则波动方程为:
A. y=Acos[t-(x-5)/4]
B. y=Acos[t+(x+5)/4]
C. y=Acos[t-(x+5)/4]
D. y=Acos[t+(x-5)/4]
考题
一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ/2处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:
A. y = Acos(2πt/T-2πx/λ-π/2)
E. y = Acos(2πt/T+2πx/λ+π/2)
C. y = Acos(2πt/T+2πx/λ-π/2)
D. y = Acos(2πt/T-2πx/λ+π/2)
考题
一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:()A、y=Acos(2πt/T-2πx/λ-1/2π)B、y=Acos(2πt/T+2πx/λ+1/2π)C、y=Acos(2πt/T+2πx/λ-1/2π)D、y=Acos(2πt/T-2πx/λ+1/2π)
考题
一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()A、y=Acosω[t-(x-L)/u]B、y=Acosω[t-(x+L)/u]C、y=Acosω[t+(x+L)/u]D、y=Acosω[t+(x-L)/u]
考题
一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)
考题
一平面简谐波沿x轴正向传播,已知x=-5m处质点的振动方程为y=Acosπt,波速为u=4m/s,则波动方程为:()A、y=Acosπ[t-(x-5)/4]B、y=Acosπ[t-(x+5)/4]C、y=Acosπ[t+(x+5)/4]D、y=Acosπ[t+(x-5)/4]
考题
处于原点(x=0)的一波源所发出的平面简谐波的波动方程为y=Acos(Bt-Cx),其中A、B、C皆为常数。此波的速度为();波的周期为();波长为();离波源距离为l处的质元振动相位比波源落后();此质元的初相位为()。
考题
单选题已知平面简谐波的方程为y=Acos(Bt-Cx),式中A、B、C为正常数,此波的波长和波速分别为( )。[2017年真题]A
B/C,2π/CB
2π/C,B/CC
π/C,2B/CD
2π/C,C/B
热门标签
最新试卷