网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。
A
(xsinx)/2
B
x3-x2/2
C
x2ex
D
(xsinx)/2+C1cosx+C2sinx
参考答案
参考解析
解析:
由于yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则∂Q/∂x=∂P/∂y,ψ″(x)+ψ(x)=cosx。从选项的结构中,可以看出,B、C项无正余弦,一定不是ψ″(x)+ψ(x)=cosx的特解,又因为(xsinx)/2+C1cosx+C2sinx中含有自由常数,故D项不是特解。将A项代入ψ″(x)+ψ(x)=cosx,等式两边相等,故A项是该方程特解。
由于yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则∂Q/∂x=∂P/∂y,ψ″(x)+ψ(x)=cosx。从选项的结构中,可以看出,B、C项无正余弦,一定不是ψ″(x)+ψ(x)=cosx的特解,又因为(xsinx)/2+C1cosx+C2sinx中含有自由常数,故D项不是特解。将A项代入ψ″(x)+ψ(x)=cosx,等式两边相等,故A项是该方程特解。
更多 “单选题设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。A (xsinx)/2B x3-x2/2C x2exD (xsinx)/2+C1cosx+C2sinx” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点
B.一定是函数f(x)的极值点
C.一定不是函数f(x)的极值点
D.是否为函数f(x)的极值点,还不能确定
考题
函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点
B.x=0不是函数(x)的极值点
C.x=0是函数(x)的极小值点
D.x=0是函数(x)的极大值点
考题
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
A.A当f'(x)≥0时,f(x)≥g(x)
B.当f'(x)≥0时,f(x)≤g(x)
C.当f"(x)≥0时,f(x)≥g(x)
D.当f"(x)≥0时,f(x)≤g(x)
考题
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
A.Af(0)>1,f"(0)>0
B.f(0)>1,f"(0)C.f(0)0
D.f(0)
考题
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.
考题
单选题以下关于二元函数的连续性的说法正确是( )。A
若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B
若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C
若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D
以上说法都不对
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f″(x)+f(x)=0B
f′(x)+f(x)=0C
f″(x)+f′(x)=0D
f″(x)+f′(x)+f(x)=0
考题
单选题设确定了函数y=g(x),则( )。A
x=0是函数y=g(x)的驻点,且是极大值点B
x=0是函数y=g(x)的驻点,且是极小值点C
x=0不是函数y=g(x)的驻点D
存在x=0的一个小邻域,y=g(x)是单调的
考题
单选题设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。A
-e-x/2+(cosx)/2+(sinx)/2B
x3-x2/2+1C
x2ex-2D
(xcosx)/2+C1cosx+C2sinx
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足( )。A
x∂z/∂x+y∂z/∂y=0B
x∂z/∂x-y∂z/∂y=0C
y∂z/∂x+x∂z/∂y=0D
y∂z/∂x-x∂z/∂y=0
考题
单选题设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )。A
若fx′(x0,y0)=0,则fy′(x0,y0)=0B
若fx′(x0,y0)=0,则fy′(x0,y0)≠0C
若fx′(x0,y0)≠0,则fy′(x0,y0)=0D
若fx′(x0,y0)≠0,则fy′(x0,y0)≠0
考题
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A
只能确定一个具有连续偏导数的隐函数z=z(x,y)B
可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C
可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D
可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
考题
单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是( )。A
f(x0,y)在y=y0处的导数等于零B
f(x0,y)在y=y0处的导数大于零C
f(x0,y)在y=y0处的导数小于零D
f(x0,y)在y=y0处的导数不存在
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f′(x)+f(x)=0B
f′(x)-f(x)=0C
f″(x)+f(x)=0D
f″(x)-f(x)=0
热门标签
最新试卷