网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=( )。
A
-z
B
z
C
-y
D
y
参考答案
参考解析
解析:
由f(y/x,z/x)=0可得,∂z/∂x=-[f1′·(-y/x2)+f2′·(-z/x2)]/(f2′/x),∂z/∂y=-(f1′/x)/(f2′/x),则x∂z/∂x+y∂z/∂y=-(―yf1′/x―zf2′/x+yf1′/x)/(f2′/x)=z。
由f(y/x,z/x)=0可得,∂z/∂x=-[f1′·(-y/x2)+f2′·(-z/x2)]/(f2′/x),∂z/∂y=-(f1′/x)/(f2′/x),则x∂z/∂x+y∂z/∂y=-(―yf1′/x―zf2′/x+yf1′/x)/(f2′/x)=z。
更多 “单选题由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=( )。A -zB zC -yD y” 相关考题
考题
以下选项错误的是A.main(){ int x,y,z;x=0;y=x-1;z=x+y;}B.main(){ int x,y,z;x=0,y=x+1;z=x+y;}C.main(){ int x;intint y;x=0,y=x+1;z=x+y;}D.main(){ int x,y,z;x=0;y=x+1;z=x+y,}
考题
下面哪一条是对伪传递规则的描述?( )A.若X→Y及Y→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含B.由X→Y及Z=y,有X→ZC.由X→Y,WY→Z,有XW→ZD.由X→Y,X→Z,有X→YZ
考题
已知曲面方程为x-yZ+z2-2x+8y+6z=10,则过点(5,-2.1)的切平面方程为( )。
A、2x+3y+2z=0
B、2x+y+2z=lO
C、x-2y+6z=15
D、x-2y+6z=0
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
指出下列关系模式是第几范式?并说明理由。 (1)R(X,Y,Z)F={XY→Z} (2)R(x,Y,z)F={Y→z,XZ→Y} (3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ} (4)R(x,Y,z)F={X→Y,X→Z} (5)R(x,Y,Z)F={XY→Z} (6)R(W,X,Y,Z)F={X→Z,WX→Y}
考题
判断下列关系模式可以达到的范式级别: 1)R(X,Y,Z)F={XY→Z} 2)R(X,Y,Z)F={Y→Z,XZ→Y} 3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ} 4)R(X,Y,Z)F={X→Y,X→Z}
考题
单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足( )。A
x∂z/∂x+y∂z/∂y=0B
x∂z/∂x-y∂z/∂y=0C
y∂z/∂x+x∂z/∂y=0D
y∂z/∂x-x∂z/∂y=0
考题
问答题若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
考题
单选题由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=( )。A
-zB
zC
-yD
y
热门标签
最新试卷