网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

计算题:已知某家庭的总效用方程为TU=14Q-Q2,Q为消费商品数量,试求该家庭消费多少商品效用最大,效用最大额是多少?


参考答案

更多 “ 计算题:已知某家庭的总效用方程为TU=14Q-Q2,Q为消费商品数量,试求该家庭消费多少商品效用最大,效用最大额是多少? ” 相关考题
考题 已知某消费者每年用于商品1和商品2的收入为540元,两商品的价格分别为P1=20元和P2=30元,该消费者的效用函数为U=3X1X22,该消费者每年购买这两种商品的数量各应是多少?每年从中获得总效用是多少?

考题 已知某人的效用函数为TU=4X+Y,如果消费者消费16单位X和14单位Y,试求:(1)消费者的总效用(2)如果因某种原因消费者只能消费4个单位X产品,在保持总效用不变的情况下,需要消费多少单位Y产品?

考题 已知某人的效用函数为TU=15X+Y,如果消费者消费10单位X和5单位Y,试求:(1)消费者的总效用(2)如果因某种原因消费者只能消费4个单位X产品,在保持总效用不变的情况下,需要消费多少单位Y产品?

考题 已知某家庭的总效用方程为TU=20Q-Q2 ,Q为消费商品数量,试求该家庭消费多少商品效用最大,效用最大额是多少。

考题 已知某家庭的总效用方程为TU=14Q-Q2 ,Q为消费商品数量,试求该家庭消费多少商品效用最大,效用最大额是多少。

考题 假定某消费者的效用函数为U=q^0.5+3M,其中,q为某商品的消费量,M为收入。 求:(1)该消费者的需求函数;(2)该消费者关于该商品的反需求函数;(3)当p=1/12、q=4时的消费者剩余。

考题 某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: (1)若PX =2元,PY=1元,I=10元,求最大的总效用及收入边际效用 (2)若PY上升到了4元,为保持问题(1)中的总效用不变,消费者需要花多少钱?

考题 己知某消费者每年用于商品1和商品2的收入为540元,两商品的价格分别为P1=20元和P2= 30元,该消费者的效用函数为 该消费者每年购买这两种商品的数量应各是多少每年从中获得的总效用是多少?

考题 已知某消费者每年用于商品1和商品2的收入为540元,两商品的价格分别为P1=20元和P2=30元,该消费者的效用函数为U=3X1X,该消费者每年购买这两种商品的数量各应是多少?每年从中获得总效用是多少?