网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数f(x)=2ax2-ax,且f(2)=-6,则a=(  )

A.-1
B.0
C.1
D.4

参考答案

参考解析
解析:
更多 “设函数f(x)=2ax2-ax,且f(2)=-6,则a=(  )A.-1 B.0 C.1 D.4” 相关考题
考题 设函数f(2x)=lnx,则f′(x)=________.

考题 设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数? A.f(x)+f(-x) B.f(x)*f(-x) C.[f(x)]2 D.f(x2)

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。A. B. C.F(-a)=F(a) D.F(-a)=2F(a)-1

考题 设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().

考题 设f(x)是[-2,2]上的偶函数,且f’(-1)=3,则f′(1)=.

考题 设X的分布函数为F(x)=且Y=X^2-1,则E(XY)=_______.

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x) B.F(x)F(y) C.1-[1-F(x)]^2 D.[1-F(x)][1-F(y)]

考题 设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则= A.Ax B.z C.-x D.-z

考题 设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.

考题 设函数f(x)=logax,且f(4)=2,则下列各式成立的是 A.f(3)<O B. C.f(5)<f(3) D.f(3)<f(5)

考题 设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=(  )A.-5 B.5 C.-10 D.10

考题 已知函数y=f(x)是奇函数,且f(-2)=-6,则f(2)= (  )A.-2 B.6 C.2 D.-6

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。

考题 设f(x)是连续函数,且,则f(x)=( )。 A. x2 B. X2-2 C. 2x D. x2-16/9

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]

考题 设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

考题 填空题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 填空题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

考题 填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

考题 填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

考题 填空题设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

考题 单选题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。A e2B 2e2C e3D 2e3

考题 单选题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=(  )。A e2B e3C 2e2D 2e3

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0