网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
填空题
设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

参考答案

参考解析
解析:
φ′(4)=1/f′(0)=1/sin2(sin1)。
更多 “填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

考题 函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。() 此题为判断题(对,错)。

考题 设函数f(x)=1/x+1,则f(f(x))=()。

考题 已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )A.f(x)=4x+3B.f(x)=2x+5C.f(x)=5x+2D.f(x)=3x+5

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1) B.f(1)C.|f(1)|>|f(-1)| D.|f(1)|

考题 设函数,(u)可导,z=f(sin y-sin x)+xy,则=__________.

考题 设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.

考题 设函数y=f(x)在(0,+∞)内有界且可导,则( )。A. B. C. D.

考题 已知函数f(x)=lg(x+1)。 (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 设函数y=f(x)为最小正周期为π的奇函数,则f(x)可能是( )。A.f(x)=sinx B.f(x)=tan2x C.f(x)=sin(2x+π/2) D.f(x)=sinxcosx

考题 填空题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

考题 单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。A f(0)是f(x)的极大值B f(0)是f(x)的极小值C 点(0,f(0))是曲线y=f(x)的拐点D f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A 1/5B 1/7C -1/7D -1/5

考题 填空题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A 1B -1C 1/7D -1/7

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 单选题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。A sin2(sin1)B 1/sin2(sin1)C sin(sin1)D 1/sin(sin1)

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

考题 填空题设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

考题 单选题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。A 1/sin2(sin1)B sin2(sin1)C -sin2(sin1)D -1/sin2(sin1)

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0

考题 单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A -1/2B -1/4C -1/7D -1/9